РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

ФИЗИКА ГОРЕНИЯ И ВЗРЫВА

НАУЧНЫЙ ЖУРНАЛ

Выходит с января 1965 г. Периодичность 6 номеров в год Том 52, № 2 Март — апрель 2016 г.

СОДЕРЖАНИЕ

Манташян А. А. Кинетические проявления процесса низкотемпературного горения углеводородов и водорода — холодные и прерывистые пламена	3
Замащиков В. В., Бунев В. А., Шварцберг В. М., Бабкин В. С. К обоснованию применимости кинетической схемы для численного исследования пламени смесей водорода и метанола с воздухом.	18
Князьков Д. А., Славинская Н. А., Дмитриев А. М., Шмаков А. Г., Коробейничев О. П., Ридель У. Исследование структуры пламени топливной смеси <i>н</i> -гептан/толуол методом молекулярно-пучковой масс-спектрометрии и компьютерного моделирования	21
Большова Т. А., Коробейничев О. П., Торопецкий К. В., Шмаков А. Г., Чернов А. А. Каталитическое влияние субмикронных частиц TiO ₂ на скорость распространения метановоздушного пламени	35
Тупикин А. В., Третьяков П. К., Денисова Н. В., Замащиков В. В., Козулин В. С. Диффузионный факел в электрическом поле с изменяемой пространственной конфигурацией	49
Болобов В. И. Влияние условий теплообмена на критическое давление возгорания металлов в кислороде	54
Крайнов А. Ю., Порязов В. А. Математическое моделирование горения замороженной суспензии нанодисперсного алюминия	60
Мансуров З. А., Фоменко С. М., Алипбаев А. Н., Абдулкаримова Р. Г., Зар- ко В. Е. Особенности алюмотермического горения систем на основе оксида хрома в условиях высокого давления азота	67
Сабденов К. О. Отрицательный эрозионный эффект и возникновение неустойчивого горения. 2. Численное моделирование	76

усаченко Е. И., Стесик Л. Н., Кислов В. М. Окисление порошкообразных угродных материалов водяным паром	88
Хмель Т. А., Фёдоров А. В. Влияние столкновительной динамики частиц на процессы ударно-волнового диспергирования	93
Лапшин О. В., Смоляков В. К. Математическое моделирование теплового взрыва в механически активированных смесях $SiO_2 + Al$	106
Корчагин М. А., Булина Н. В. Сверхадиабатический режим теплового взрыва в механически активированной смеси вольфрама с сажей	112
Каленский А. В., Ананьева М. В., Звеков А. А., Зыков И. Ю. Парадокс малых частиц при импульсном лазерном инициировании взрывного разложения энергетических материалов.	122
Мочалова В. М., Уткин А. В. Стабилизация неустойчивых детонационных волн в смесях нитрометана с инертными разбавителями	130
Сильвестров В. В., Бордзиловский С. А., Гулевич М. А., Караханов С. М., Пай В. В., Пластинин А. В. Измерение температуры ударно-сжатой эмульсионной матрицы.	138