РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ГЕОФИЗИКИ

С. И. КАБАНИХИН

ОБРАТНЫЕ И НЕКОРРЕКТНЫЕ ЗАДАЧИ

4-е издание, переработанное и дополненное

Научный редактор чл.-корр. РАН В. Г. Романов

Обязательный бесплатный экссипляр

НОВОСИБИРСК
ИЗДАТЕЛЬСТВО СИБИРСКОГО ОТДЕЛЕНИЯ
РОССИЙСКОЙ АКАДЕМИИ НАУК
2018

УДК 519.6+517.9 ББК В161.62+В192 К12 ДОІ 10.15372 / INVERSE2018KSI

Кабанихин, С. И. Обратные и некорректные задачи: учебное пособие / С. И. Кабанихин, науч. ред. В. Г. Романов; Рос. акад. наук, Сиб. отд-ние, Ин-т вычислит. математики и мат. геофизики. – 4-е изд., перераб. и доп. — Новосибирск : СО РАН : Издательство СО РАН, 2018. — 512 с.

В учебном пособии изложены методы исследования и решения обратных и некорректных задач линейной алгебры, интегральных и операторных уравнений, интегральной геометрии, спектральных обратных задач и обратных задач рассеяния; рассмотрены линейные некорректные задачи и коэффициентные обратные задачи для гиперболических, параболических и эллиптических уравнений; дан обширный справочный материал.

Для студентов учреждений высшего профессионального образования. Может быть полезен аспирантам, стажерам, инженерам, научным работникам, а также преподавателям вузов.

Рецензенты:

доктор физико-математических наук
В. В. Васин

доктор физико-математических наук $A.\ \Gamma.\ Ягола$

доктор физико-математических наук $B.\ C.\ Белоносов$

Рекомендовано Ученым советом механико-математического факультета Новосибирского государственного университета для обучающихся по образовательным программам высшего образования по направлениям подготовки «01.03.01 — Математика», «01.03.02 — Прикладная математика и информатика», «01.03.03 — Механика и математическое моделирование», «02.03.01 — Математика и компьютерные науки».

Think.

БЕН РАН отдел в Учреждении РАН Научном центре РАН в Черноголовке

ISBN 978-5-6040987-4-5 (СО РАН) ISBN 978-5-7692-1607-7 (Издательство СО РАН)

- © Сибирское отделение Российской академии наук, 2018
- © Кабанихин С. И., 2018

Оглавление

Предисловие к четвертому изданию	8
Предисловие ко второму изданию	10
Предисловие	11
От автора	15
Глава 1. Определения и примеры	16
1.1. Об определении обратных и некорректных задач	16
1.2. Примеры обратных и некорректных задач	25
Глава 2. Некорректные задачи	39
2.1. Корректные и некорректные задачи	41
2.2. Об устойчивости в различных пространствах	43
2.3. Квазирешение. Теоремы В. К. Иванова	46
2.4. Метод М. М. Лаврентьева	49
2.5. Метод регуляризации А. Н. Тихонова	52
2.6. Градиентные методы	60
2.7. Оценка скорости сходимости по функционалу	67
2.8. Оценка условной устойчивости и сильная сходимость градиентных методов решения некорректных задач	71
2.9. Псевдообратный оператор и сингулярное разложение опера-	
тора	79
Глава 3. Некорректные задачи линейной алгебры	86
3.1. Обобщение понятия решения. Псевдорещение	89
3.2. Метод регуляризации	91
3.3. Принципы выбора параметра регуляризации	95
3.4. Итерационные регуляризирующие алгоритмы	96
3.5. Сингулярное разложение	98
3.6. Алгоритм сингулярного разложения и метод С. К. Годунова	106

3.7. Метод квадратного корня	110
3.8. Дополнительные сведения и упражнения	111
Глава 4. Интегральные уравнения	117
4.1. Интегральные уравнения Фредгольма первого рода	117
4.2. Регуляризация линейных интегральных уравнений Вольтерра	
первого рода	124
4.3. Операторные уравнения Вольтерра с ограниченно липшиц-	
непрерывным ядром	131
4.4. Локальная корректность и теорема единственности в целом.	135
4.5. Корректность в окрестности точного решения	137
4.6. Регуляризация нелинейных операторных уравнений первого рода	142
Глава 5. Интегральная геометрия	148
5.1. Задача Радона	149
5.2. Восстановление функции по сферическим средним	157
5.3. Определение функции одной переменной по значениям ее ин-	
тегралов. Проблема моментов	157
5.4. Обратная кинематическая задача сейсмики	163
Глава 6. Спектральные обратные задачи и обратные задачи	
рассеяния	173
6.1. Прямая задача Штурма – Лиувилля на конечном интервале.	175
6.2. Обратные задачи Штурма – Лиувилля на конечном интервале	182
6.3. Метод Гельфанда – Левитана на конечном интервале	186
6.4. Обратные задачи рассеяния	192
6.5. Обратные задачи рассеяния во временной области	199
Глава 7. Линейные задачи для гиперболических уравнений	206
7.1. Восстановление функции по сферическим средним	206
7.2. Задача Коши для гиперболического уравнения с данными на	
времениподобной поверхности	209
7.3. Обратная задачи термоакустики	211
7.4. Линеаризованная многомерная обратная задача для волново-	
го уравнения	213
Глава 8. Линейные задачи для параболических уравнений.	228
8.1. О постановке обратных задач для параболических уравнений	
и их связи с соответствующими обратными задачами для ги-	
перболических уравнений	229

8.2. Обратная задача теплопроводности с обратным временем (ре-	999
троспективная)	233 246
8.3. Граничные обратные задачи и задачи продолжения	
8.4. Внутренние задачи и задачи об источнике	247
Глава 9. Линейные задачи для эллиптических уравнений	252
9.1. Теорема единственности и оценка условной устойчивости на	050
плоскости	253
9.2. Формулировка начально-краевой задачи для уравнения Лапласа в виде обратной задачи. Сведение к операторному урав-	
нению	257
9.3. Исследование прямой начально-краевой задачи для уравне-	
ния Лапласа	258
9.4. Задача продолжения для уравнения с самосопряженным эл-	
липтическим оператором	262
Глава 10. Коэффициентные обратные задачи	
для гиперболических уравнений	267
10.1. Обратные задачи для уравнения $u_{tt} = u_{xx} - q(x)u + F(x,t)$	267
10.1.1. Задача с распределенными начальными данными для	000
уравнения $u_{tt} = u_{xx} - q(x)u + F(x,t)$	268
$10.1.2$. Задача с сосредоточенным источником для уравнения $u_{tt} = u_{xx} - q(x)u \dots \dots \dots \dots$	276
10.1.3. Разрешимость в целом обратной задачи для уравнения	
$u_{tt} = u_{xx} - q(x)u \dots \dots$	280
10.1.4. Связь обратной задачи Штурма — Лиувилля и обрат-	
ной задачи с сосредоточенным источником	288
10.2. Обратные задачи акустики	291
10.2.1. Исследование одномерной обратной задачи акустики	299
10.2.2. Методы решения обратной задачи акустики	302
10.3. Одномерная обратная задача электродинамики	304
10.4. Локальная разрешимость многомерных обратных задач	311
10.5. Метод отображений Неймана — Дирихле для полупростран-	010
ства	319
10.6. Лучевые постановки обратных задач	323
10.6.1. Асимптотическое разложение фундаментального реше-	324
ния уравнения акустики	324 326
10.6.2. Трехмерная обратная задача для уравнения акустики 10.7. Двумерный аналог уравнения Гельфанда — Левитана — Крей-	0 <u>4</u> 0
на на	333

тлава 11. Коэффициентные обратные задачи	
для параболических и эллиптических уравнений	337
11.1. Постановка коэффициентных обратных задач для параболи-	
ческого уравнения. Сведение к гиперболическим обратным за-	
дачам	338
11.2. Сведение к спектральным обратным задачам	340
11.3. Теоремы единственности	342
11.4. Теорема единственности в переопределенной постановке для	
эллиптического уравнения	345
11.5. Обратная задача в полубесконечном цилиндре	346
Глава 12. Некоторые определения, формулировки теорем,	
необходимые при изучении обратных и некорректных	
задач	349
12.1. Пространства	349
12.1.1. Евклидовы пространства	350
12.1.2. Гильбертовы пространства	355
12.1.3. Банаховы пространства	359
12.1.4. Метрические и топологические пространства	361
12.1.5. Примеры гильбертовых и банаховых пространств	368
12.2. Операторы	370
12.2.1. Операторы в топологических пространствах	370
12.2.2. Операторы в метрических пространствах	371
12.2.3. Операторы в линейных пространствах	373
12.2.4. Операторы в банаховых пространствах	374
12.2.5. Операторы в гильбертовых пространствах	379
12.2.6. Линейные операторы в конечномерных пространствах	
(матрицы)	385
12.3. Сопряженное пространство и сопряженный оператор	393
12.3.1. Функционалы	393
12.3.2. Сопряженное пространство	396
12.3.3. Сопряженный оператор	400
12.4. Элементы дифференциального исчисления в банаховых про-	
странствах	404
12.5. Функциональные пространства	407
12.5.1. Функциональные пространства, используемые при рас-	
смотрении стационарных краевых задач	407
12.5.2. Функциональные пространства, используемые при ре-	
шении нестационарных задач	417

12.6. Уравнения математической физики	422
12.6.1. Дельта-функция Дирака и ее свойства	422
12.6.2. Основные уравнения математической физики	426
12.6.3. Классическая задача Коши для волнового уравнения.	429
12.6.4. Фундаментальное решение дифференциального опера-	
тора	430
Список литературы	433
Список литературы к четвертому изданию	452
Приложение. Диаграммы	456
Список основных обозначений	502
Предметный указатель	506