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The anomalies of supercooled water in thermodynamic response functions at atmospheric pressure,
the phase transition between low and high density amorphous ices�LDA and HDA�, and a predicted
fragile–strong transition are accounted for in a unified manner by reconciling an idea due to Stanley
and co-workers introducing a second critical point separating LDA and HDA ices with a conjecture
proposed by Speedy that LDA is a different phase from a normal water, called water II. The
reconciliation is made on the basis of results from extensive molecular dynamics simulations at
constant pressure and temperature. It is found that there exist large gaps around temperature 213 K
in thermodynamic, structural, and dynamic properties at atmospheric pressure, suggesting liquid–
liquid phase transition. This transition is identified with an extension of the experimentally observed
LDA–HDA transition in high pressure to atmospheric pressure. Thus, we propose a new phase
diagram where the locus of the second critical point is moved into negative pressure region. With
this simple modification, it becomes possible to account for the divergence of the thermodynamic
response functions at atmospheric pressure in terms of the critical point and the spinodal-like
instability of HDA. The unstable HDA undergoes a transition to LDA phase in lower temperature.
The transition is also observed in high pressure region such as 200 MPa while it disappears at
negative pressure,�200 MPa. This reinforces our proposed phase diagram in which there is no
continuous path from a supercooled state to LDA at atmospheric pressure. It is argued that the
HDA–LDA transition is accompanied by a fragile–strong transition. A possible mechanism of
avoiding crystallization of aqueous solutions is also discussed in terms of a difference in hydrogen
bond number distribution between LDA and HDA. ©1996 American Institute of Physics.
�S0021-9606�96�00436-9�

I. INTRODUCTION

Water exhibits various anomalies in thermodynamic re-
sponse functions such as heat capacity and isothermal
compressibility.1–3 It has been shown experimentally that at
least two metastable phases of amorphous ices exist4 to-
gether with a rich variety of solid phases;5 they are referred
to as low density amorphous ice�LDA � and high density
amorphous ice�HDA�. The transition between LDA and
HDA is first order because it exhibits a hysteresis in
pressure-induced transformation.6 In an intermediate�super-
cooled� state to connect water above the melting temperature
Tm with LDA phase, those thermodynamic properties to-
gether with several transport properties tend to diverge with
a power low behavior when approaching toTs , 228 K.7,8

These anomalies were accounted for by many authors with
various ideas and conjectures. Among them, the most no-
table one was due to Speedy, which is called ‘‘stability-limit
conjecture.’’9 He explained the divergence of thermody-
namic properties in supercooled state in conjunction with the
liquid–vapor spinodal. The liquid spinodal line is the limit of
mechanical stability of the liquid state with respect to fluc-
tuations toward a thermodynamically stable phase. The liq-
uid spinodal line begins at the liquid–gas critical point. In
temperature–pressure (p –T) plane, this line decreases
monotonically with decreasing temperature along a path ly-
ing below the liquid–gas coexistence curve in positive pres-

sure region and goes into negative pressure. The liquid spin-
odal line has a minimum at negative pressure and passes
back to positive pressure as the temperature decreases fur-
ther. The increasingly anomalous thermodynamic behavior
of liquid water in the low temperature region can be inter-
preted via such a reentrant spinodal line, which divides the
metastable supercooled water from stable ice. Stanley and
Teixeira10 accounted for the anomalies at 228 K from a dif-
ferent view point, called ‘‘percolation model’’ in which em-
phasis was placed on the fact that fully hydrogen bonded
water molecules are not randomly distributed but rather cor-
related. The origin of the instability of supercooled water is,
in either account, an increasing fluctuation of a long ranged
tetrahedral connectivity of water molecules. This idea which
seems to be intuitive but persuasive was further extended by
Sasai2,11 and by Sastryet al.12 with a mean field approxima-
tion.

The conjectured minimum in liquid spinodal line, at
which the temperature of maximum density line terminates,13

has not been directly observed due to the experimental diffi-
culties. Pooleet al.14 carried out molecular dynamics�MD�
simulations over a wide range of stable, metastable, and un-
stable liquid-state points, and demonstrated that liquid spin-
odal line decreases monotonically with decreasing tempera-
ture and does not reenter into the positive pressure region.
They concluded that the anomalies are related to a second
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critical point from which a LDA–HDA phase boundary ap-
pears. According to their estimation, the second critical point
was located at around 200 MPa. The phase diagram they
proposed suggests that if crystallization does not intervene,
supercooled water is further cooled without a phase transi-
tion to LDA which has a glass transition temperature at
Tg , 136 K.15–18It is, however, not clear how to reconcile the
critical behaviors with the fact that water loses its anomalies5

around the same pressure range as the critical point was lo-
cated by them14 and what happens to the thermodynamic
response functions when approaching to the critical point.

It has long been argued whether supercooled water has a
thermodynamically continuous path to LDA.19–25 Recently,
Speedy proposed the other conjecture that LDA�LDA be-
comes liquid aboveTg , called water II� has no continuous
path from normal water at atmospheric pressure.26 It is ap-
propriate here to note, that we specify LDA and HDA for
terms which are distinct phases from each other having fairly
different densities, potential energies, etc., but they may be
either liquid and amorphous phase; use of LDA and HDA is
conventional and both phases are liquid above the corre-
sponding glass transition temperature. An entropy difference
between ice and LDA must be very small in order for the
free energy surfaces of LDA and supercooled water to touch
in a narrow range between 228 K (Ts , the conjectured sta-
bility limit � and 233 K (T2 , the homogeneous nucleation
temperature, the limit of experimental supercooling�. The es-
timation of the entropy was made based on the measured
thermodynamic properties and the model for calculation of
the configurational entropy of LDA. It was shown within the
framework of the model adopted that LDA is neither the
same phase as supercooled water nor is created from super-
cooled water via first order transition. This is in sharp con-
trast to MD simulation study.14 The phase diagram for these
amorphous ices including supercooled liquid state is still
controversial.

In order to model the phase behavior of liquid water,
Pooleet al.27 developed a van der Waals type equation. In
their model, the free energy is divided into two parts; the van
der Waals free energy and the free energy due to hydrogen
bonds, both of which are functions of the volume and have
minima at fairly different molar volumes. Their model pre-
dicts, though qualitatively, anomalous thermodynamic prop-
erties of water, such as density maximum temperature, the
divergence in the compressibility and the heat capacity with
assignment of appropriate parameters. At sufficiently low
temperature, the free energy in this model has two minima.
They associated the LDA↔HDA transition with the transi-
tion from a free energy local minimum to another in density
coordinate axis. However, this model also yields a different
phase diagram by a slight change of the parameters: It was
demonstrated that though two phase diagrams are apparently
so different, an introduction of two minima of the free en-
ergy against volume results in two different phase diagrams
with changing the hydrogen bond energy. Although this
model calculation contributes significantly to our under-
standing of the origin of the anomalies of supercooled water,
the problem posed as to the thermodynamic continuity of

supercooled water is not resolved by this model.
We have performed long MD simulations at constant

pressure in order to reexamine phase behaviors and found
discontinuities in thermodynamic and structural properties
around 213 K.28 This finding enables us to reconcile both
ideas proposed by Pooleet al.14 and by Speedy.26 Thus, a
phase diagram becomes simpler and comprehensible. The
free energies of LDA and HDA are analyzed by dividing
them into several contributions, the potential energies at lo-
cal minimum structures, harmonic and anharmonic vibra-
tional free energies, and the configurational entropies. The
configurational entropies of LDA and HDA are calculated
from the remaining components, assuming first-order phase
transition between LDA and HDA. Moreover, we show that
the observed large differences in thermodynamic properties
between two phases entails a predicted fragile–strong
transition29 in pure water. Analysis of hydrogen bond num-
ber per molecule makes a difference between LDA and HDA
clearer and we deduce a possible mechanism for avoiding
crystallization in aqueous solutions of salt, alcohol, and hy-
drogen peroxide. Those investigations also serve to under-
standing roles of water in biological system such as cryo-
preservation and solar system, particularly in comets.

The present paper is organized as follows. The method
of MD simulations is briefly described in Sec. II. Results
obtained from MD simulations are presented and a new
phase diagram is proposed in Sec. III. Our findings on phase
diagram for supercooled water are concluded with a few re-
marks in Sec. IV.

II. MOLECULAR DYNAMIC SIMULATIONS

MD simulations are performed with a fixed pressure of
0.1 MPa at several temperatures using Nose´–Andersen’s
constant temperature-pressure method.30,31The temperatures,
T are set to 298, 273, 255, 233, 213, and 193 K. As an
intermolecular interaction, TIP4P potential32 is adopted. Its
accuracy in reproducing thermodynamic properties at lower
temperature was examined in detail by Pooleet al.33 The
simulation time is ranging from 1 ns�298 K� to 20 ns�213 to
193 K�, which is significantly longer than previous simula-
tions. Those longer runs together with a different ensemble
�NPT� can predict a different location of the critical point,
which in turn leads to a different phase diagram. The number
of moleculesN is set to 216. Preliminary simulations with
larger number of molecules�1728� do not change our con-
clusion given below. Because of slow equilibration in lower
temperatures, the last configuration at 233 K is used for the
initial configuration at 213 K, and so forth at 193 K. We
select 500 to 5000 configurations each separated by 25�at
higher temperatures� to 2000 �at lower temperatures� time
steps, with a step size of 5� 10�16 s. Those configurations
obtained from MD simulation are called instantaneous�I-�
structures, from which various properties to be compared
directly to experiment such as thermodynamic response
functions, structure factors, transport coefficients, and spec-
tral densities are calculated. The potential energy for those I-
structures are composed of two contributions,�1� the poten-
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tial energy of the minimum structures, and�2� upward shifts
from �1� due to thermal energy. The minimum energy struc-
tures correspond to stable points in configuration space, and
therefore, are free from thermal excitation. Those are called
inherent34 or quenched�Q-� structures.2,3,35 The steepest de-
scent minimization is applied to obtain Q-structures from I-
structures generated by MD simulation.

Other MD simulations have also been performed at high
��200 MPa� and at low��200 MPa� pressure in order to
confirm our phase diagram proposed on the basis of MD
simulation results at atmospheric pressure. The temperatures
examined are limited to 253, 233, 213, and 193��200 MPa�
and 233, 213, 193, and 173 K��200 MPa�. In MD simula-
tion at high temperature and low pressure�298 and probably
273 K, �200 MPa�, a cavitation occurs since there is an
intersection with the liquid-spinodal line above�in tempera-
ture� which liquid state is mechanically unstable. Low mo-
bility of water molecules in low temperature and at low pres-
sure prevents us from obtaining reliable results, and
therefore, the lowest temperature in the present simulation is
limited to 193 K.

III. RESULTS AND DISCUSSION

A. Thermodynamic properties

In Fig. 1, plotted are the potential energies at 0.1 MPa
�triangles� each averaged over a block composed of equally
spaced 500 configurations of both I-structure and Q-structure
as mentioned in the previous section. In order to remove a
trivial temperature dependence from the calculated potential
energy of I-structures, plotted are the potential energies sub-
tracted by the harmonic part of the potential; 3RT whereR is
the gas constant. More interesting are the large differences in
potential energies of both I- and Q-structures between 233
and 213 K.�The minimum energy value among 10 blocks at
213 K is plotted to avoid mixing of lower and higher energy
states due to a large fluctuation; the chosen block belongs to
the lower energy state, which continues for longer than 0.5
ns.� This suggests that, although liquid water at room tem-
perature has a continuous path to a supercooled state down to
233 K, it undergoes a transition around 213 K to another
state, whose energy is substantially�1.5 kJ mol�1� lower
than that at 233 K in Q-structure. The potential energy in Q-
structure at 193 K is almost the same as the potential energy
in Q-structure at 213 K. It should be noted, that this lower
energy phase below 213 K has the potential energy higher by
1 kJ mol�1 than that of proton-disordered cubic ice; the mean
potential energy over 100 Q-structures of proton disordered
cubic ice with TIP4P model is�55.9 kJ mol�1. If this lower
energy phase is identified with LDA, the energy difference in
our calculation is consistent with the measured heat
release,22 1.3 kJ mol�1 at 150 K. A part of the measured heat
release should be attributed to larger anharmonic energy of
LDA than cubic ice.

In order to draw a phase diagram for supercooled water,
a number of simulations at different pressures are required. It
is not our scope to present a quantitative phase diagram but
to examine the locus of the second critical point and to de-

termine whether there is a continuous path from supercooled
water to LDA at atmospheric pressure. Thus, we have carried
out further MD simulations at high��200 MPa� and low
(�200 MPa� pressure. The potential energies for I-structure
and Q-structure are shown in Fig. 1�the trivial term, 3RT is
subtracted in I-structure�. An abrupt change in potential en-
ergy at �200 MPa is found between 193 and 173 K. The
difference is somewhat smaller compared with that at 0.1
MPa. On the other hand, the potential energy at�200 MPa
changes almost linearly with temperature, suggesting no
transition occurs in the temperature range examined here. A
similar plot for the density is given in Fig. 2. An abrupt
change is also found in density at�200 MPa while no ap-
preciable temperature dependence is seen in the systems un-
der tensile pressure,�200 MPa. Therefore, the conclusion
derived from the results at 0.1 MPa gains firm ground.

FIG. 1. Potential energy of instantaneous�a� and quenched�b� structures at
various temperatures. Harmonic energy, 3RT is subtracted from the poten-
tial energy for Instantaneous structure. Individual points are the potential
energies in kJ mol�1 averaged over 500 configurations. Triangle; pressure
p � 0.1 MPa, circle;p � �200 MPa, square;p � �200 MPa. At pressure
p � 0.1 MPa, the minimum energy value among 10 blocks at 213 K is
plotted to avoid mixing of lower and higher energy states due to a large
fluctuation �see text�; the chosen block belongs to the lower energy state,
which continues for longer than 0.5 ns.
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As shown in Fig. 2, the gap in density is larger at high
pressure than at atmospheric pressure although the reverse
holds for potential energy. When we consider usual phase
behaviors such as in liquid–gas equilibrium, the most appro-
priate order parameter to characterize behaviors in the vicin-
ity of the critical point is a density difference between two
phases. In the present simulation, the density of the system is
allowed to fluctuate around a mean value. Hence, we calcu-
late the density distributions which are shown in Fig. 3. At
pressurep�0.1 MPa, the distribution for the same block as
in Fig. 1 �the lowest potential energy block� is shown.
Clearly, each has a unimodal distribution. At high and atmo-
spheric pressures, the center of distribution jumps from the
high to low density with decreasing temperature while the
center do not drift with decreasing temperature at�200
MPa. The order parameter is larger at higher pressure com-
pared to that at atmospheric pressure. This suggests that the
order parameter can be a vanishing value in certain low pres-
sure. This is indeed the case of what we observe at�200
MPa. The coexistence line should be terminated at the sec-
ond critical point which is located at a negative pressure
higher than�200 MPa.36

It is not clear whether the large volume and energy
changes at around 213 K are associated with a first-order
phase transition from this limited size of simulations: The
small system size blurs the distinction between first order
phase�reversible� transition and�irreversible� spinodal insta-
bility. However, there must exist a critical point at around
213 K and at pressure lower than the atmospheric pressure.
This is because a large density fluctuation, 0.03 g cm�3, at
213 K compared with 0.01 g cm�3 at 233 K is attributed to
vacillation between two distinct phases near the critical
point. This situation is the same as a density of a finite sys-
tem size in isothermal–isobaric condition near a gas–liquid
critical point; the density fluctuates between gas and liquid
phases.40 In accordance with the large density fluctuation, the

energy difference between the maximum and minimum en-
ergies at 213 K among the blocks�each composed of 500
configurations� amounts to 0.5 kJ mol�1, which is much
larger than 0.1kJ mol�1 at 233 K or 0.05 kJ mol�1 at 193 K.

FIG. 2. Densities at various temperatures in g cm�3 averaged over 500
configurations. Triangle; pressurep � 0.1 MPa, circle;p � �200 MPa,
square;p � �200 MPa. At pressurep�0.1 MPa and temperature 213 K, the
mean density for the same block as in Fig. 1 is plotted.

FIG. 3. Density distributions averaged over 500 configurations at various
temperatures.�a� pressurep � 0.1 MPa,T � 193 K �solid line�, T � 213 K
�dotted line�, T � 233 K �dash–dot line�. �b� p � �200 MPa,T � 173 K
�heavy solid line�, T � 193 K�solid line�, T � 213 K�dotted line�, T � 233 K
�dash–dot line�. �c� p � �200 MPa,T � 193 K�solid line�, T � 213 K�dot-
ted line�, T � 233 K �dash–dot line�, T � 253 K �dashed line�. At pressure
p � 0.1 MPa and temperature 213 K, the distribution for the same block as in
Fig. 1 is shown.
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The existence of the critical point is also suggested by the
pressure dependence of the order parameter.

Since the second critical point is estimated to be close to
0.1 MPa and at 213 K, the thermodynamic properties are
heavily influenced by the critical point. If the system size is
limited, a transition between two phases occurs easily as
mentioned above. The density distributions, which have the
highest and lowest density�also having the highest and low-
est energy� among 10 blocks at 213 K, are plotted in Fig. 4.
The distribution for the lowest density block�its center is
0.977 g cm�3� is almost the same as that at 193 K�0.974 g
cm�3� while the distribution for the highest density block has
a center at 0.991 g cm�3 which is similar to the extrapolated
density, 0.992 g cm�3 from those at 233 and 253 K. The
system at 213 K indeed undergoes a facile transition between
two phases. From those results, it is difficult to discriminate
the spinodal instability from the phase transition near the
critical point such as atmospheric pressure. However, water
at 193 K is a different phase from water at 233 K. The
divergent characters can be ascribed to the existence of the
critical point and/or to the spinodal line since the spinodal
line locates near the critical point. At high pressure, it is
expected that the spinodal instability becomes important.

It is reasonable to consider that the phase boundary line
continuously increases up to, say 400 MPa where LDA–
HDA transition is experimentally observed.6 Therefore, the
transition at atmospheric pressure is induced by the same
mechanism as the LDA–HDA phase transition observed
experimentally.4 This means that metastable supercooled wa-
ter can be recast in the framework of LDA and HDA phases
and that the divergent characters can also be related to the
influences of the critical point and the spinodal instability.

B. Phase diagram for supercooled water

We propose a new phase diagram of metastable water as
drawn in Fig. 5, which is, at a glance, similar to the picture
of Stanleyet al.14,37 and others.38,39 The spinodal line, the
limit of stability of HDA, emerges from this critical point.

As the temperature decreases, the HDA→LDA spinodal line
first increases, reaching a maximum pressure point, and then
goes down to the negative pressure again. Other spinodal and
coexistence lines presumably increase monotonically. A
transition from HDA to LDA at low temperature such as 77
K is unlikely to occur as was suggested by theoretical
calculation27 as well as experiments.4,6

A main difference from the previous study14,37 is a locus
of the second critical point, which is located in negative pres-
sure region. At atmospheric pressure, HDA turns to LDA
phase when the temperature goes down to the intersect with
the HDA→LDA spinodal line. This is consistent with our
observation that a substantial decrease in density is accom-
panied by HDA→LDA transition as shown in Fig. 2. Thus,
all the divergences in supercooled water are ascribed to the
spinodal instability at the temperature below which HDA
becomes unstable and to the existence of the second critical
point. It is reasonable that normal water, designated by
Speedy,26 is identified with water at temperature above the
phase boundary,T0 . In our phase diagram, LDA�water II� is
a different phase from water in supercooled state so that
large fluctuations associated with the critical point are not
observed in very high pressure region, which is consistent
with the fact that water ceases to exhibit singular behaviors
above 300 MPa.5

As water is cooled, it encounters the LDA→HDA spin-
odal line atTs� and the coexistence line atT0 . No transition
occurs in our simulations until it reaches to the HDA→LDA
spinodal line atTs . However, crystallization to ice atT2

prevents us from observing the transition. We can observe
only the symptom of the spinodal instability in thermody-
namic response functions. When heated, LDA should be
transformed to HDA�normal water� after crossingTs�. This
transition is again not observed experimentally because LDA
becomes ice atT1(� 150 K�. It is well known that, although

FIG. 4. Density distributions averaged over 500 configurations atp � 0.1
MPa andT � 213 K �solid lines� andT � 233 K �dotted lines�. Two distri-
butions at the same temperature are those averaged within the blocks which
give maximum and minimum potential energies.

FIG. 5. Schematic phase diagram for water. Thin solid lines are coexistence
lines of stable phases which separate liquid water from vapor and ice from
liquid water. Thin dashed line is liquid spinodal. Boundaries of metastable
states are shown by heavy solid line�F� for the coexistence line and by
heavy dashed lines�L and H� for LDA spinodal above which LDA becomes
unstable and for HDA spinodal below which HDA becomes unstable. The
gas–liquid critical point is shown by C. The second critical point is denoted
by C’.
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pressure is correctly reproduced by the use of TIP4P poten-
tial, the temperature obtained with this potential should shift
upward by 10 to 20 K in order to compare with experiment.14

That the divergences occur experimentally at 228 K is thus,
in good correspondence to the discontinuity at about 213 K
in our MD simulation.

C. Structural difference associated with the transition

It is essential to show water below 213 K is neither ice
nor is partially crystalline form. Radial distribution functions
�RDFs� and structure factors serve to discern a disordered
form from crystalline. The structure factor

S�k ��
1

N � � �
i

cosk–ri� 2

�� �
i

sin k–ri� 2� �1�

is also calculated from 500 configurations of I-structures for
water and also 250 configurations of I-structure for cubic ice.
Here,k is a wave vector,k��k�, andri stands for the posi-
tion of the oxygen atom ofith water molecule. Five different
proton disordered structures generated are used as initial con-
figurations for MD simulations of ice at 213 K and 50 con-
figurations from each simulation are sampled. Other condi-
tions are the same as those for liquid state. The structure
factors for liquid water at 193, 213, and 233 K are shown in
Fig. 6 together with that for ice at 213 K. As shown in Fig.
6�a�, cubic ice has sharp peaks characteristic of solid phase.
On the other hand, that of water at 193 K is similar to that at
213 K having halo diffraction pattern, typical of liquid, or
amorphous state. No pronounced peak appears in low wave
number region and we need not worry about a partial crys-
tallization. LDA thus obtained seems to be a different phase
from crystalline structure. It is, however, noted that the sys-
tem size fixes the lower limit on the wave vectors that can be
studied and that the above result in very small wave vector
range �specifically k�0) becomes incompatible with the
large density fluctuation expected.

The RDFs for Q-structure are given in Fig. 7. Judging
from the peak heights, the structure at 213 K is quite differ-
ent from that of ice. As lowering the temperature from 298 K
down to 233 K, only small difference is seen in RDF. The
RDF at 213 K is clearly different from that 233 K, in par-
ticular the separation of the second peak from the first one is
more distinct. On the other hand, a difference in RDF be-
tween 213 and 193 K is negligibly small in Q-structure,
which implies that the system at 213 K sampled here is simi-
lar phase to that at 193 K and structural change below 213 K
is quite small. The arrangement of molecules at 173 K and
�200 MPa is similar to that at 193 K and 0.1 MPa while the
RDF above 193 K is similar to that at 233 K and 0.1 MPa.
The RDFs at negative pressure,�200 MPa are all similar to
that at 193 K and 0.1 MPa�RDFs at�200 MPa are not
shown here�.

In Fig. 8, the distributions of pair interaction energy for
Q-structures are depicted. Only pairs of water molecules
separating less than 3.5 Å are taken into consideration. In
cubic ice, there are two kinds of hydrogen bonds depending
on rotation of the dihedral angle�around the axis parallel to

the hydrogen bond� as seen in Fig. 8�a�. In LDA at 193 K,
the peak becomes broader and distinction between two kinds
of hydrogen bonds becomes difficult. It is clear, from a com-
parison between those at 298 and 233 K�Fig. 8�b��, that a
fairly large number of pairs are only loosely or not hydrogen
bonded�the energy higher than�10 kJ mol�1) and that the
decrease in temperature reduces the number of high energy
�i.e., defect� pairs while the distribution of strongly hydrogen
bonded�stable� pairs remains almost unchanged. A further
decrease of temperature by only 20 K, however, changes the
distribution drastically. Most of defects suddenly disappear
resulting in formation of stable hydrogen bonds. Although
water below 213 K does not have a periodic molecular ar-
rangement, local structure and tetrahedral connectivity are
almost perfect. The distribution at 193 K overlaps almost
completely with that at 213 K.

D. Collective motions near potential well

We compare the density of state for intermolecular vi-
brational motions by performing a normal mode analysis.
The densities of state for intermolecular vibrational motions
calculated from Q-structures are given in Fig. 9�a�. Differ-
ence between those at 298 and 233 K is insignificant whereas

FIG. 6. Structure factors for oxygen–oxygen of water at 233, 213, and 193
K and at 0.1 MPa together with that for cubic ice at 213 K.�a� Water at 193
K �heavy solid line�, cubic ice at 213 K�solid line�, �b� water at 193 K�solid
line�, water at 213 K�dotted line�, water at 233 K�dash–dot line�.
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difference is large between those at 233 and 213 K. Lower-
ing the temperature by only 20 K reduces number of modes
between 300 and 500 cm�1, which are mixed modes com-
posed of translations and rotations of individual molecules
and lead to a neighboring Q-structure with small excitation
energy.41 The densities of states for intermolecular vibra-
tional motions are used for evaluation of harmonic free en-
ergies.

The densities of state for I-structures are given in Fig.
9�b�. In the case of I-structures, there exist some imaginary
frequency modes. The density of imaginary modes is plotted
in negative frequency region of the figure. The number of
imaginary modes is approximately 146.3 out of 1293 total
modes�11.3%� at 298 K. The number is reduced remarkably
and is approximately 83.7�6.4%� at 233 K. The number is
much more reduced by lowering the temperature by 20 K; I-
structures are stable for most of the displacements and only
49.9 �3.9%� of total modes are unstable. A further decrease
by 20 K reduces the number only slightly, 40.1 modes
�3.1%�. Again, a large difference in the number of imaginary
modes between 233 and 213 K is observed. We also per-
formed the same analysis for cubic ice at 213 K. In ice, there
are some imaginary modes, 37.3 out of total 1293 modes

�2.9%�, which are unstable in only local space and do not
have the crystalline structure collapsed during the simulation
run.

E. Potential energy surface and the fragile–strong
transition

The potential energy surface of a fragile liquid involves
numerous multilevel potential energy wells and what kind of
potential energy wells the trajectory can cover depends seri-
ously on the temperature. On the other hand, a strong liquid
has Arrhenius type temperature dependence of the viscosity;
the logarithm of shear viscosity versus inverse of tempera-
ture �Angell plot� is a straight line, which indicates that there
is a single excitation process, suggesting a rather regular po-
tential surface.42 As shown in Fig. 1, the potential energy in
Q-structure significantly decreases with decreasing the tem-
perature in the range from 298 to 233 K. This leads us to a
conclusion that water in this temperature range is a fragile
liquid in the strong–fragile classification. A measurement of
viscosity supports this view.29 The fact that the potential en-

FIG. 7. Oxygen–oxygen radial distribution functions for water at 233, 213,
and 193 K and at 0.1 MPa together with that for cubic ice at 213 K.�a�
water at 193 K�heavy solid line�, cubic ice�solid line�. �b� water at 193 K
�solid line�, water at 213 K�dotted line�, water at 233 K�dash–dot line�,
water at 298 K�dashed line�.

FIG. 8. Distributions of pair interaction energy for quenched structures at
233, 213, and 193 K and at 0.1 MPa together with that for cubic ice at 213
K. �a� water at 193 K�heavy solid line�, cubic ice�solid line�, �b� water at
193 K �solid line�, water at 213 K�dotted line�, water at 233 K�dash–dot
line�, water at 298 K�dashed line�. The distributions are calculated for pairs
of water molecules whose distances are smaller than 3.5 Å. The ordinate
axis unit is arbitrary.
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ergy in Q-structure is insensitive to the temperature change
implies that water blow 213 K�in TIP4P model� is a strong
liquid.

A simple extrapolation of the potential energy for Q-
structure above 233 K intersects with the energy of cubic ice
in its Q-structure at around 160 K. Unless there is a break in
the potential energy plot versus temperature between 233
and 160 K and the potential energy becomes less sensitive to
temperature, the potential energy of liquid state becomes
lower than that of ice. In order to preclude this Kauzmann’s
paradox,10,43water must undergo a kind of transition and the
potential in Q-structure should be almost constant�against
temperature� before vitrified as pointed out by Angell.29 The
transition observed around 213 K is not a glass transition
since molecules even at 193 K still move more than intermo-
lecular distances during our simulation run and the mean
square displacements shown in Fig. 10�a� are linear in time,
which ensures the diffusion is normal. The self-diffusion co-
efficients calculated from the slope of the mean square dis-
placements are 2�10�6, 9�10�8, and 6�10�8 cm2 s�1 at
temperature 233, 213, and 193 K, respectively. The dipole
autocorrelations in Fig. 10�b� also show that reorientational

motions are not frozen even at 193 K. At this temperature,
most of the molecules in the whole system belong to the
firmly hydrogen bonded species. As was pointed out
previously,44 firmly hydrogen-bonded molecules have
smaller mobility. However, water molecules at 193 K on the
average are not trapped in a local potential minimum. This
means that water at 193 K is liquid phase as termed water II.

It should be addressed whether the phase behaviors at
atmospheric pressure proposed here are plausible in terms of
the entropy difference�S(T1) between ice and LDA.
Speedy26 pointed out a large discrepancy between estimated
�S(T1)��6�9 J K�1 mol�1� on the basis of random net-
work model45 �RNM� and�S(T1) ��2.9 J K�1 mol�1� from
thermodynamic requirement that LDA and HDA free energy
lines touch atT0 �i.e., phase transition occurs�. However,
application of RNM does not lead to the divergent thermo-
dynamic properties at 228 K25 and estimation of the configu-
rational entropy of LDA from RNM may not be justified
where it is assumed there is a continuous path from normal
water to LDA. In our picture, LDA is a different phase hav-
ing lower entropy although LDA has a random network
structure.�The difference between LDA and normal water is
most conveniently viewed by hydrogen bond number distri-

FIG. 9. Densities of state for intermolecular vibrational motions at 298, 233,
213, and 193 K and at 0.1 MPa.�a� Quenched structures, 193 K�solid line�,
213 K �dotted line�, 233 K �dash–dot line�, 298 K �dashed line�. �b� Instan-
taneous structures, 193 K�solid line�, 213 K �dotted line�, 233 K �dash–dot
line�, 298 K �dashed line�. Imaginary modes are shown in negative fre-
quency region. The ordinate axis unit is arbitrary.

FIG. 10. �a� Mean square displacement for water at 193 K�solid line�, 213
K �dotted line� and 233 K�dash–dot line� at pressure 0.1 MPa.�b� Dipole
autocorrelation functions for water at 193 K�solid line�, 213 K �dotted line�
and 233 K�dash–dot line�. The long time behaviors at 193 K are given in
the insets.
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butions as shown later.� Then,�S(T1) can be smaller than
that calculated based on RNM. Therefore, our phase diagram
may not suffer from any apparent thermodynamic inconsis-
tency and the first order transition betweenTs and T2 is
plausible.

In order to check the self-consistency of our phase dia-
gram in more detail, we evaluate the free energy components
of water in LDA and HDA. The free energyA of the system
is written as

A�U�F�kBT ln �, �2�

where the mean potential energy of Q-structure and the mean
free energy of intermolecular vibrations are denoted byU
and F, respectively, and� stands for the number of Q-
structures, which increases as exp(	N) with respect to the
number of molecules,N. Here,kB is the Boltzmann constant.
For a certain large system, such quantities asA,U,F, and
ln � are all extensive properties proportional toN. Equation
�2� is expressed in the form per molecule basis, thereby
eliminating system size dependence as

a�u� f �kBT	, �3�

wherea, u, and f are properties per molecule ofA, U, and
F, respectively. The termkB	 is identified with the configu-
rational entropy,sc . The vibrational free energy is composed
of the harmonicf h and anharmonicf a free energy contribu-
tions. Our simulation study is based on classical mechanics
and the termf h is easily calculated by

f h /kBT��
0




g���ln���/kBT �d�, �4�

whereg(�) is an appropriately normalized density of state
for intermolecular vibrational motions and� is Planck con-
stant divided by 2. It is difficult to calculated a reliable free
energy arising from the anharmonic vibrations. This term
may amount to a few kJ mol�1. However, the difference
between LDA and HDA is expected to be small. The loga-
rithm of the number of configurations,kB ln �/N�sc , con-
figurational entropy, is dependent on the temperature in case
of fragile liquid. This value changes with the phase transi-
tion. No simple way to calculate reliablesc is known. How-
ever, it should be notedsc

h �for HDA� is larger thansc
l �for

LDA �, the latter of which may be considered to be indepen-
dent of temperature if the HDA–LDA transition is accompa-
nied by fragile–strong transition.

If the phase diagram in Fig. 5 is correct, the free energy
of LDA must be equal to that of HDA atT0 . The transition
temperatureT0 is tentatively set to 213 K. There is another
equilibrium where ice and water exists simultaneously. Ne-
glecting an insignificantpV term at atmospheric pressure, we
can write down two equilibrium conditions as

ui� f h
i � f a

i �Tmsc
i �uh� f h

h� f a
h�Tmsc

h �5�

and

ul� f h
l � f a

l �T0sc
l �uh� f h

h� f a
h�T0sc

h , �6�

where superscriptsl, h, andi stand for LDA, HDA, and ice.
The signs of the unknown termf a are all negative. In gen-

eral, the anharmonic free energy of liquid state is lower than
that of solid at the same temperature. Therefore, the inequal-
ity

f a
i � f a

h�0 �7�

must hold at all temperatures. It is reasonable to adopt a
similar inequality to the relation between LDA and HDA
phases as

f a
l � f a

h�0. �8�

Thus, it becomes possible to evaluate the upper bounds of
the configurational entropy changes,�sc�sc

h�sc
i and

�sc��sc
h�sc

l . That is,

�uh�ui� f h
h� f h

i �

Tm
��sc �9�

and

�uh�ul� f h
h� f h

l �

T0
��sc�. �10�

Care must be taken forTm value, which should be the melt-
ing point for TIP4P water,Tm�240 K �or a little bit
higher�.46 In Fig. 11, the left-hand sides of inequalities�9�
and �10� are plotted against temperature. The filled circles
are corresponding equilibrium temperatures. This predicts
the upper bound of the configurational entropy of melting,
7.7 J K�1 mol�1. The entropy of the transition from HDA to
LDA is approximately 6.1 J K�1 mol�1. This value is quite
large and the entropy difference between ice and LDA is
very small, only 1.6 J K�1 mol�1 or less. The number of
defects in LDA is much smaller than in HDA. A further
detail on the origin of small entropy for LDA is not fully
understood at present time but this is consistent with the
condition that LDA undergoes first-order transition. How-

FIG. 11. Partial free energy differences divided by temperature. The partial
free energy is calculated as a sum of the potential energy at quenched
structure and the harmonic vibrational free energy. Solid line; free energy
difference between cubic ice and HDA, dashed line; free energy difference
between LDA and HDA, dash–dot line; free energy difference between
LDA and ice. The dash–dot line does not correspond to the realistic entropy
difference between LDA and ice at any temperature.
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ever, the conjecture that LDA is a distinct phase from normal
water survives. Thus, we have reconciled the idea due to
Stanleyet al.14,37 by shifting the second critical point with
Speedy’s conjecture.26

F. Difference in hydrogen bond number distribution
between pure water and aqueous solution

It is quite reasonable that the structural change in the
transition is related to a difference in hydrogen bond network
since it is the hydrogen bond that contrasts water to other
liquid. At temperatures examined here, a probability for a
pair of adjacent molecules to be hydrogen bonded is well
above the percolation threshold for any reasonable criterion
for the hydrogen bond and the hydrogen bonded network is
spread over an entire system. A topological difference of the
network pattern between two phases may be found. How-
ever, a comparison is made here simply by calculating hy-
drogen bond number distributions. Again, use of hydrogen
bonds in Q-structure is preferable, eliminating apparent tem-
perature dependence of hydrogen bond number. A definition
of hydrogen bond, in the present study, relies solely on the
potential energy for a pair of molecules; if the interaction
energy is below the criterion, the pair is regarded as a
hydrogen-bonded pair. The criteria we choose are ranging
from �12 to �18 kJ mol�1. A water molecule hydrogen
bonded withj other molecules is called species-j and a prob-
ability to find species-j is given by f j . The fractions of each
species characterized by the number of hydrogen bonds with
neighboring molecules are tabulated in Table I. It is evident
from the table that most of water molecules belong to
species-4 andf 4 increases drastically upon the transition
from HDA to LDA phase, at pressures 0.1 and 200 MPa. On
the other hand, increase inf 4 is rather gradual with decreas-
ing temperature at�200 MPa where no transition is ob-
served. The mean coordination number, which is defined by
the number of molecules within 3.5 Å from the center, is
listed in Table II. A clear difference is seen between LDA
and HDA phases.

The fact that almost all water molecules are species-4 in
LDA phase is very important to delineate why addition of a
small amount of salt, alcohol, or hydrogen peroxide prevents
a system from being frozen to ice.1,47,48 Those substances
interact strongly with water and take part in the hydrogen
bonded network at room temperature without imposing a se-
vere free energy penalty. Although the network prevails in
the entire system to form ‘‘gel’’ in pure water at room tem-
perature down to 233 K, there are some defects as revealed
in Tables I and II. The nature of those solute molecules does
not qualify for the production of three dimensional network
observed in LDA. However, a number of defects in normal
water allow the solutes to be dissolved by forming incom-
plete hydrogen bond network with surrounding water mol-
ecules: Those defects in hydrogen bond network are compat-
ible with interstitial solute molecules in normal water
�HDA�. If the mixing free energy is not so unfavorable�this
is the case of salt, alcohol, and hydrogen peroxide�, those
solutes can stay in the sea of normal water even in lower

temperature down to 233 K. Yet, the number of species-4 in
the solutions cannot, because of the presence of solutes, ex-
ceed the threshold value above which supercooled water un-
dergoes a transition to LDA. In LDA phase, most of water
molecules are locally tetrahedral and defects to allow the
solutes to form imperfect hydrogen bond network are
purged. In other words, the formation of hydrogen bond net-
work in the same manner as LDA is no longer expected. This
idea, although not connected to LDA, is not new but has
been proposed by Stanley and Teixeira10 in terms of ‘‘patch
breaking species.’’ This also has something to do with
‘‘naive water,’’7 which is regarded as water having more
defects than the number allowed in LDA phase. Aqueous
solutions of alcohol and hydrogen peroxide are cooled down
to the glass transition temperature without being crystallized
to ice since no large fluctuation associated with the spinodal-
like instability is expected, which leads water to ice in labo-
ratory experiment. These solutions are classified as a fragile
liquid, which is immediately seen from the Angell plot.29

The solute molecules break hydrogen bonds to the extent that
water is prohibited to be LDA phase. This entails continuous
change of viscosity down toTg . If the above account is
correct, LDA �water II� hardly dissolves these solutes.49

G. Coarse graining of Q-structure

A question as to how the potential energy is lowered by
lowering the temperature to 233 K is addressed here. The
potential surface at room temperature�298 K� seems to be
complicated and transitions from one minimum�Q-structure�
to another take place frequently. As has been shown in our
previous study,2,28 a set of local minimum structures are
close together in configuration space. The distances between
successive structures in configuration space are generally
small but infrequent jump-like transitions result in large dis-
tance movements. This suggests that those structures may
constitute a group. The infrequent but large-distance jump
discriminates one group from another. The representative
structure of this group is obtained by the coarse graining of a
series of quenched structures in a similar way as was made in
realization of V-structure.50,51 The coarse graining consists
of two steps;52 the averaging the successive Q-structures
over 2 ps and the subsequent quenching. The average pro-
cess is performed according to

R̄i� t ��
1

������/2

��/2

Ri� t���d�, �11�

whereRi(t) is the coordinate�both translational and orien-
tational� of ith molecule at timet and R̄i(t) is the averaged
coordinate over����2 ps�. In our MD simulation, the vol-
ume may fluctuate. The size of the basic cell is scaled to the
mean value for the coarse graining.

The coarse graining is repeated for (n�)30 times. The
potential energies for those structures are given in Table III.
The potential energies for Q- and coarse-grained structures
are plotted in Fig. 12. The potential energy after coarse
graining is almost always lower than the simply quenched
structures�i.e., n�0). This implies that the coarse-graining
procedure eliminates higher potential energy structures from
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temporal equilibrium positions in the same sense that the V-
structure is obtained by eliminating large distortions.50,51 A
group of quenched structures seem to have a hierarchical
structure in configuration space. Each group, which is distant

from another group, can be represented by the coarse-grained
structure, which is similar to what we called ‘‘overall inher-
ent structures’’ in the previous study.3,35,53The same proce-
dures are made for lower temperature systems, 233 and 193

TABLE I. Hydrogen bond number per molecule. Hydrogen bond energies� are ranging from�12 to �18
kJ mol�1.

1 2 3 4 5

p�0.1
T �� �12

233 0 0.005 0.101 0.838 0.055
213 0.0 0.001 0.040 0.939 0.020
193 0.0 0.001 0.041 0.934 0.023
T �� �14

233 0 0.014 0.144 0.802 0.039
213 0.0 0.003 0.060 0.922 0.015
193 0.0 0.004 0.070 0.910 0.016
T �� �16

233 0.003 0.045 0.251 0.680 0.021
213 0.001 0.016 0.161 0.814 0.008
193 0.001 0.019 0.171 0.799 0.101
T �� �18

233 0.020 0.140 0.400 0.432 0.007
213 0.008 0.081 0.359 0.549 0.002
193 0.011 0.081 0.335 0.570 0.003

p�200
T �� �12

233 0.0 0.006 0.127 0.796 0.071
213 0.0 0.005 0.113 0.817 0.066
193 0.0 0.003 0.085 0.865 0.048
173 0.0 0.001 0.044 0.920 0.035
T �� �14

233 0.001 0.018 0.192 0.741 0.048
213 0.0 0.015 0.175 0.766 0.044
193 0.000 0.010 0.151 0.806 0.033
173 0.000 0.004 0.090 0.883 0.023
T �� �16

233 0.004 0.060 0.311 0.600 0.025
213 0.003 0.053 0.299 0.622 0.023
193 0.002 0.043 0.282 0.654 0.018
173 0.0 0.019 0.208 0.759 0.014
T �� �18

233 0.028 0.181 0.429 0.352 0.008
213 0.025 0.175 0.425 0.367 0.007
193 0.019 0.158 0.426 0.389 0.007
173 0.009 0.119 0.403 0.464 0.004

p��200
T �� �12

233 0.0 0.003 0.076 0.891 0.030
213 0.0 0.001 0.049 0.931 0.019
193 0.0 0.000 0.017 0.972 0.012
T �� �14

233 0.0 0.007 0.098 0.872 0.022
213 0.0 0.003 0.066 0.918 0.013
193 0.0 0.000 0.022 0.970 0.007
T �� �16

233 0.001 0.021 0.173 0.791 0.013
213 0.0 0.011 0.132 0.850 0.006
193 0.0 0.002 0.077 0.916 0.006
T �� �18

233 0.009 0.087 0.337 0.562 0.005
213 0.007 0.066 0.308 0.616 0.002
193 0.0 0.027 0.238 0.733 0.001
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K; ��/2 is taken as 50 ps. However, the potential energies of
the coarse-grained structures at 233 and 193 K do not de-
crease unlike the higher temperature case.

The simplest way to examine the tetrahedral coordina-
tion of each water molecule is to evaluate the contributions
of the potential energy separately; a term arising from the
coulombic interaction and a term from the Lennard-Jones
part. The former can be a measure of tetrahedrality. If the
latter term contributes significantly, the structure is that of
the simple liquid. Those two terms for water systems are also
listed in Table III. As the total energy becomes lower, the
Lennard-Jones part increases and the tetrahedral coordination
is enhanced sacrificing the oxygen–oxygen repulsive inter-
action.

IV. CONCLUDING REMARKS

The anomalies of supercooled water in thermodynamic
response functions at atmospheric pressure, the phase transi-
tion between LDA and HDA and the predicted fragile–
strong transition are accounted for in a unified manner by
reconciling two conjectures so far proposed;�1� a second
critical point separating LDA and HDA ices due to Stanley
and co-workers,�2� existence of a different phase from a
normal water, called water II proposed by Speedy. A new
phase diagram for supercooled water is proposed on the basis
of extensive MD simulations. At atmospheric pressure, ther-
modynamic properties, structures, and dynamic properties of
TIP4P water have discontinuities around 213 K suggesting

liquid–liquid phase transition, which is an extension of the
LDA–HDA transition experimentally observed at high pres-
sure. In the new phase diagram, the locus of the second criti-
cal point is moved into negative pressure region. Thus, it
becomes possible to account for the divergence of the ther-
modynamic response functions at atmospheric pressure in
terms of the large critical fluctuation and/or the spinodal-like
instability of HDA. The unstable HDA undergoes a transi-
tion to LDA phase. It is difficult from this limited size of
simulation to identify whether the transition is first order.
However, our observation, the discontinuities in thermody-
namic properties in high pressure region such as�200 MPa
and continuous changes at negative pressure�200 MPa, en-
courages an idea of the first-order phase transition. Our simu-
lation results at�200 MPa also show RDF and the density
of state exhibit much smaller temperature dependence than
those at atmospheric pressure. This reinforces our proposed
phase diagram and gives rationale to the existence of the
second critical point between 0 and�200 MPa. It is also
discussed that the HDA–LDA transition entails a fragile-
strong transition.

Since two different amorphous phases at high pressure
are known experimentally,4 the phase boundary separating
LDA and HDA must go down to a certain pressure on the
temperature–pressure plane. Moreover, thatTs , the tempera-
ture of the stability limit decreases with increasing pressure54

is in good correspondence to the negative slope of
(dp/dT) along the coexistence curve since the volume and
entropy changes have different signs. Two disordered phases
may have a critical point. Then, we are left with only two
possible ways as to the phase behaviors at atmospheric pres-
sure. The phase boundary may be terminated either in posi-
tive pressure or in negative pressure. The former is the pic-
ture drawn by Pooleet al.14 where supercooled water has a

FIG. 12. Time evolution of the potential energies for quenched structure
�upper, solid line� and coarse-grained structure�lower, heavy solid line� at
298 K for 20 ps. Coarse-graining cycles are repeated for 30 times. The first
and the last 50 data are not shown since an edge effect is large in calculating
coarse-grained structures.

TABLE II. Mean coordination number for water. The coordination number
is defined as the number of water molecules within 3.5 Å from the central
molecule.

T 253 233 213 193 173

p�0.1 4.69 4.55 4.19 4.28
p�200 5.23 5.24 5.09 4.32

p��200 4.19 4.12 4.11 4.05

TABLE III. Total and Lennard-Jones�LJ� part of potential energy�in
kJ mol�1)at 0.1 MPa and various temperatures and those for coarse-grained
structure aftern cycles at 0.1 MPa and 298 K.

n Total LJ

0 �52.20 10.69
5 �52.56 11.27
10 �52.70 11.54
15 �52.77 11.63
20 �52.80 11.70
25 �52.84 11.80
30 �52.89 11.84

T Total LJ

298 �52.18 10.64
273 �52.44 10.80
253 �52.85 10.88
233 �53.37 11.19
213 �54.97 12.26
193 �55.07 12.32
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continuous path to LDA. The latter is the scenario proposed
here; the coexistence line enters into negative pressure region
and water at atmospheric pressure necessarily undergoes a
transition, which is the same as observed at high pressure. In
practice, the transition may occur not at the intersect with
coexistence line but at the intersect with the spinodal line.
An idea underlying the proposed phase diagram is the first
order phase transition between two liquid phases, though it is
not explicitly demonstrated from MD simulations because of
the limited system size. All the properties shown do not con-
tradict with our conclusion that the LDA–HDA transition is
similar to that of gas–liquid. The density difference can be
an order parameter as is the case of gas–liquid equilibrium.
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