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Abstract We theoretically investigate the wave-vector and temperature-dependent electron transport in a magnetic

nanostructure modulated by an applied bias. The large spin-polarization can be achieved in such a device, and the degree

of spin-polarization strongly depends on the transverse wave-vector and the temperature. These interesting properties

may be helpful to spin-polarize electrons into semiconductors, and this device may be used as a spin filter.
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1 Introduction

The idea of spintronics is to manipulate the electron

spin to represent digital information, and to fabricate ul-

timately spin-based semiconductor devices.[1−2] The real-

ization of spintronic devices relies on the ability to inject

spin-polarized current into a semiconductor from either

magnetic semiconductor or ferromagnetic metal, which

is one of the crucial ingredients for a functional spin-

tronic device.[3−4] However, an efficiency of spin injec-

tion through ideal semiconductor/ferromagnetic interface

is disappointingly small due to the large conductivity

mismatch.[5−6] The use of spin filters is, therefore, an al-

ternative approach, which can significantly enhance spin

injection efficiencies.[7−8]

Recently, the electron-spin filtering in magnetically

modulated nanostructures has received a lot of atten-

tion. Experimentally, the attractive proposal for spin-

tronic devices has been given to exploit a single ferro-

magnetic stripe on top of a two-dimensional electron gas

(2DEG).[9−10] In theory, several groups have widely inves-

tigated spin effects on electronic tunneling through such

a device, and many interesting results were obtained from

numerical calculations.[11−12]

Very recently, it is found that the device possesses

the considerable spin-polarization if two δ-function mag-

netic fields have unidentical strengths.[13] In order to en-

hance the spin effect, in this paper we study the nanos-

tructure with an applied bias and two antiparallel δ-

function magnetic fields. It is found that the large spin-

polarization can be achieved in such a structure, and the

degree of spin-polarization strongly depends on the trans-

verse wave-vector and the temperature. Therefore, a bias-

tunable spin-polarized source is desirable for spintronic

applications.[14]

2 Theoretical Method and Formulas

The proposed electron-spin filter is composed of a

2DEG in the xy plane modulated by a perpendicular in-

homogeneous magnetic field in the z direction as plotted

in Fig. 1, which may be realized via the Meissner effect of

a superconductor on the top of 2DEG[15] or by deposit-

ing two ferromagnetic (FM) stripes on the top and bot-

tom of a semiconductor heterostructure, and the magne-

tization directions of the FM stripes are arranged to be

antiparallel.[16−17] Applying a bias voltage (Va) across the

2DEG induces a triangular electrical potential U(x), if we

assume a uniform resistivity within the 2DEG. For sim-

plicity, the magnetic field profile we consider is of delta

function type, and it can be expressed as B = Bz(x)z

with Bz(x) = B[δ(x) + δ(x − L)], where B denotes the

strengths of the magnetic fields and L is the separation

between the two magnetic fields.

Applying the single particle effective mass approxima-

tion, the Hamiltonian of the system can be described as

H =
1

2m∗
[p + eA(x)]2 +

eg∗

2m0

σ~

2
Bz(x) +

eVa

L
x , (1)

where m∗ and m0 are the effective and real mass of the

electron, p is the momentum of the electron, g∗ is the

effective Lande factor, σ = +1/ − 1 is for up/down spin

electrons, and A(x) = [0, Ay(x), 0] is the magnetic vector

potential given in the Landau gauge, i.e.,

Ay(x) =







0 , x < 0 ,

B , 0 < x < w ,

2B , x > w ,

(2)
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which results in Bz(x) = dAy(x)/dx.[18] For simplicity,

we introduce two characteristic parameters: the fre-

quency ωc = eB0/m∗, where B0 is some typical magnetic

field and the length lB =
√

~/eB0, so that we can ex-

press all the relevant quantities in dimensionless units:

(i) the energy E → ~ωcE (= E0E), (ii) the bias voltage

Va → (~ωc/e)Va, (iii) the coordinate r → lBr, (iv) the vec-

tor potential A(x) → B0lBA(x), and (v) the magnetic

field Bz(x) → B0Bz(x). For GaAs and an estimated

B0 = 0.1 T, we have lB = 813 Å, ~ωc = 0.17 meV, and

g∗ = 0.44.

Fig. 1 The magnetic nanostructure modulated by the
bias. Here, we take w = 4, Va = 4, and B = 4.

Because of the translational invariance of the system

along the y direction, the total electronic wave-function

can be written as Ψleft(x, y) = eikyy(eikleftx + γe−ikleftx),

x < 0, and Ψright(x, y) = τeikyyeikrightx, x > w, here γ/τ

denotes the reflection/transmission amplitude. Therefore,

with the help of the transfer matrix method, we can ob-

tain the Va-dependent transmission probability for inci-

dent electron with energy E, wave vector ky, and spin ori-

entation σ by T (E, ky, σ, Va) = (kright/kleft)|τ |
2, to evalu-

ate the spin splitting, we define the spin-polarization PT

as below

PT =
T (E, ky, +1, Va) − T (E, ky,−1, Va)

T (E, ky, +1, Va) + T (E, ky,−1, Va)
, (3)

where T (E, ky, +1, Va) and T (E, ky,−1, Va) are the trans-

mission properties of electrons with spin up and down,

respectively.

In order to further study the spin-injection in the struc-

ture, we define the electric conductance through the struc-

ture, which expresses the average electron flow over half

of the Fermi surface at zero temperature[19]

Gσ =
G0

2

∫ π/2

−π/2

T (EF ,
√

2EF sin φ, σ, Va) cos(φ)dφ , (4)

where G0 = e2m∗υF Ly/~
2, EF is the Fermi energy, υF

is the velocity corresponding to EF , Ly is the length of

the barrier structure in the y direction, and φ is the angle

of incidence relative to the x direction. Then the spin-

polarization PG of electron conductance in the structure

is defined by PG = (G+ − G−)/(G+ + G−). Here, G+ and

G− are the conductance for spin-up and spin-down elec-

trons, respectively, and PG expresses the relative spin con-

ductance excess at the Fermi energy, i.e., for zero temper-

ature.

3 Numerical Results and Discussions

We first plot the transmission coefficient as a function

of the incident energy E in Figs. 2(a)–2(c) corresponding

to the transverse wave-vector ky = −4, 0, and 4, respec-

tively. From Fig. 2, it can be obviously seen that there

exists a more remarkable discrepancy in the transmission

for electrons with opposite spin orientations. This is to

say, the significant spin splitting of the transmission spec-

tra appears in such a nanostructure, irrespective of the

wave-vector component ky. The resonant peaks shift to-

wards lower energy region for the spin-down electrons and

towards higher energy direction for the spin-up electrons.

This feature can be ascribed to the dependence of effective

potential,

Uσ(x, ky) = [~ky + eAy(x)]2/(2m∗)

+ eg∗σ~Bz(x)/(4m0) + (eVa/L)x ,

of the magnetic-barrier structure on the wave-vector ky

and the electron-spins σ. It also can be clearly seen that

the degree of spin splitting of electronic transmission is

strongly dependent on the wave-vector ky , which is also

a consequence of the variation of the effective potential

Uσ(x, ky) due to the different ky values. This character

can be seen more clearly from the inset, which shows the

spin-polarization of transmitted beams. The degree of

spin-polarization apparently decreases with the increase

of the wave-vector ky.

Next we turn to study the electron conductance and

its polarization as shown in Fig. 3. From Fig. 3, it is

clearly found that the main feature of the electron trans-

mission, i.e., the spin splitting appears in conductance

in such a nanostructure, despite the averaging of spin-

dependent transmission probability over half the Fermi

surface. The conductance of spin-up electrons is obviously

different from that of spin-down electrons, where the dot-

ted curve shifts towards the lower energy region, while

the solid curve shifts towards the higher energy direction.

Due to the great spin-splitting of the conductance, the

obvious spin-conductance polarization effect will occur in

such a magnetic nanostructure. This can be clearly seen

from the curve of spin-conductance polarization PG. Com-

pared with the spin-polarization of transmitted beams PT

for ky = 0, the conductance polarization PG takes the sim-

ilar shape, which is due to the fact that the conductance is
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obtained by integration of the electron transmission over

the incident angle as in Eq. (4).

Fig. 2 Energy dependence of the transmission probabil-
ity of an electron with (a) ky = −4, (b) ky = 0, and (c)
ky = 4, where spin polarization PT is plotted in inset.

Fig. 3 The electron conductance and polarization PG

as a function of Fermi energy for T = 0.

At last, in order to generalize our results to nonzero

temperature, we have to replace any function of G(EF )

which depends on the Fermi energy EF by the correspond-

ing average over the derivative of the Fermi function:

G(µ) =

∫

dεG(ε)(−∂f0/∂ε) ,

where

f0 = {exp[(ε − µ)/kBT ] + 1}−1 .

In Fig. 4, we plot the conductance as a function of Fermi

energy. From the figure, it can be obviously seen that

the conductance increases with the increase of the Fermi

energy. For the higher temperature, the conductance has

smaller magnitudes of the oscillations, i.e., the finite tem-

peratures smoothen the zero-temperature results, so we

can expect that the oscillations will disappear when the

temperature is high enough. Another interesting phe-

nomenon could be seen that the conductance curves of

spin-up electrons or spin-down electrons intersect at the

same Fermi energy for the different temperatures at low

Fermi energy. In order to see more clearly the effect

of temperature on the electron conductance, the conduc-

tance polarization PG is plotted in inset. It is obviously

find that the degree of spin-conductance polarization de-

creases with the increase of the temperature, so it can

be expected that the conductance polarization will disap-

pear in this nanostructure when the temperature is high

enough.

Fig. 4 The temperature-dependent conductance of elec-
tron versus the Fermi energy. Inset is its polarization PG.

4 Summary and Conclusion

In this paper, the wave-vector and temperature-

dependent electron transport has been theoretically in-

vestigated in a magnetic nanostructure modulated by an

applied bias. We find that the large spin-polarization

can be achieved in such a device, and the degree of spin-

polarization strongly depends not only on the transverse

wave-vector but also on the temperature. These interest-

ing properties may be helpful to spin-polarize electrons

into semiconductors, and this device may be used as a

spin filter.
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