

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Influence of Ag₂O on some physical properties of LiF-TiO₂-P₂O₅ glass system

M. Nagarjuna, T. Satyanarayana, Y. Gandhi, N. Veeraiah*

Department of Physics, Acharya Nagarjuna University, Nuzvid Campus, Nuzvid 521 201, A.P., India

ARTICLE INFO

Article history: Received 11 December 2008 Received in revised form 23 December 2008 Accepted 30 December 2008 Available online 6 January 2009

Keywords: Amorphous materials Dielectric response Electron paramagnetic resonance

ABSTRACT

LiF–TiO₂–P₂O₅ glasses mixed with different concentrations of Ag₂O (ranging from 0 to 1.5 mol%) were prepared. The samples were characterized by X-ray diffraction, scanning electron microscopy. The optical absorption and ESR spectral studies of these glasses have indicated that the titanium ions exist in Ti³⁺ state in addition to Ti⁴⁺ state in these samples. The IR spectral studies exhibit bands due to TiO₄ and TiO₆ structural units in addition to the conventional bands due to various phosphate structural groups. From the studies it is observed that the degree of disorder in the glass network increases with the increase in the concentration of Ag₂O from 0 to 1.0 mol%. Studies on dielectric properties of these glasses over a range of frequency and temperature have also been carried out. These studies have indicated that as the concentration of Ag₂O is increased up to 1.0 mol%, the insulating strength of the glasses decreases where as the rigidity of the glasses seems to increase when the concentration of Ag₂O is raised from 1.0 to 1.5 mol%. The a.c. conductivity seems to be predominantly ionic in nature in the glass samples containing Ag₂O up to 1.0 mol%.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been an enormous amount of research on improving the physical properties and the chemical durability of phosphate glasses by introducing a number of glass formers and modifiers such as V_2O_5 , Cr_2O_3 , Fe_2O_3 , Al_2O_3 , Ga_2O_3 , Sb_2O_3 , etc., into P_2O_5 glass network [1–10]. Among various such metal oxides, TiO₂ is expected to be more effective in improving the chemical durability of the phosphate glasses. Normally, the ions of titanium, exist in the glass in Ti⁴⁺ state and participate in the glass network forming with TiO₄, TiO₆ and some times with TiO₅ (comprising of trigonal bipyramids) structural units [11,12]. However, there are reports suggesting that these ions may also exist in Ti³⁺ valence state in some of the glass matrices [13,14]. Further, the inclusion of Ti⁴⁺ ions into the phosphate network makes these glasses useful for optically operated devices, since the empty or unfilled d-shells of Ti ions contribute more strongly to the non-linear polarizabilities.

Silver oxide mixed lithium titanium phosphate glasses can be considered as super ionic solids. Mixed electronic and ionic, pure electronic or pure ionic conduction is expected in these glasses depending upon the composition of the glass constituents. The materials that exhibit mixed conduction mechanism find numerous applications such as cathodes in electro chemical cells, smart windows, etc. Electronic conduction in this type of materials is predicted due to polaron hopping where as the ionic conduction is expected due to the diffusion of alkali ions or any other dopant ions like silver.

Though, a considerable number of studies on certain silver phosphate glasses are available [15,16] still there is a lot of scope to investigate the role of silver ions (especially in the presence of transition metal ions like titanium in small quantities) on the conduction mechanism in lithium fluoro phosphate glasses. In view of such practical importance of these glasses, this paper is devoted to report the results of investigations on dielectric relaxation and a.c. conduction phenomena and to analyze the results of these studies with the aid of the data on spectroscopic studies (optical absorption, ESR, IR) of LiF–TiO₂–P₂O₅ glasses mixed with different concentrations of silver ions.

2. Experimental methods

For the present study, a particular composition (39.5 - x)LiF-0.5TiO₂-60P₂O₅:xAg₂O with eight values of *x* ranging from 0 to 1.5 is chosen. The detailed compositions are as follows:

 $\begin{array}{l} \mathsf{A}_0\colon 39.5 LiF-0.5 TiO_2-60P_2O_5\\ \mathsf{A}_2\colon 39.3 LiF-0.5 TiO_2-60P_2O_5: 0.2 Ag_2O\\ \mathsf{A}_4\colon 39.1 LiF-0.5 TiO_2-60P_2O_5: 0.4 Ag_2O\\ \mathsf{A}_6\colon 38.9 LiF-0.5 TiO_2-60P_2O_5: 0.6 Ag_2O\\ \mathsf{A}_8\colon 38.7 LiF-0.5 TiO_2-60P_2O_5: 0.8 Ag_2O\\ \mathsf{A}_{10}\colon 38.5 LiF-0.5 TiO_2-60P_2O_5: 1.0 Ag_2O\\ \mathsf{A}_{12}\colon 38.3 LiF-0.5 TiO_2-60P_2O_5: 1.2 Ag_2O\\ \mathsf{A}_{15}\colon 38.0 LiF-0.5 TiO_2-60P_2O_5: 1.5 Ag_2O\\ \end{array}$

Analytical grade reagents of P₂O₅, LiF, Ag₂O and TiO₂ powders in appropriate amounts (all in mol%) were thoroughly mixed in an agate mortar and melted in a platinum crucible at 650 ± 10 °C in a PID temperature controlled furnace for about

^{*} Corresponding author. Tel.: +91 9440015188; fax: +91 8656 235551. *E-mail address*: nvr8@rediffmail.com (N. Veeraiah).

^{0925-8388/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2008.12.132

Table 1						
Summary	of data on	physical	parameters	of LiF-TiO ₂	-P205-Ag20	glasses.

Glass	Density (g/cm ³)	Average molecular weight	Concentration of Ag ⁺ ions N_i (×10 ²¹ ions/cm ³)	Inter ionic distance of Ag ⁺ ions r_i (Å)	Polaron radius, r _p (Å)
A ₀	2.323	95.80	_	_	-
A ₂	2.338	96.22	2.93	6.99	2.82
A_4	2.340	96.6	5.83	5.55	2.24
A ₆	2.344	97.05	8.73	4.86	1.96
A ₈	2.346	97.46	11.59	4.418	1.78
A ₁₀	2.354	97.87	14.48	4.10	1.65
A ₁₂	2.359	98.28	17.32	3.87	1.56

1 h. The resultant bubble free melt was then poured in a brass mould and subsequently annealed at 250 °C. The amorphous nature of the samples was verified by X-ray diffraction technique (using Xpert's PRO analytical X-ray diffractometer with Cu K α radiation) and scanning electron microscopy studies using HITACHI S-3400N Scanning Electron Microscope.

The density of the glasses was determined to an accuracy of ± 0.0001 , by the standard principle of Archimedes' using o-xylene (99.99% pure) as the buoyant liquid. For evaluating the density, the mass of the samples was measured to an accuracy of 0.1 mg using Ohaus digital balance Model AR2140. Infrared transmission spectra were recorded on a JASCO-FT/IR-5300 spectrophotometer to a resolution of 0.1 cm⁻¹ in the spectral range 400-2000 cm⁻¹ using potassium bromide pellets (300 mg) containing pulverized sample (1.5 mg). These pellets were pressed in a vacuum die at \sim 680 MPa. The optical absorption spectra of the glasses were recorded at room temperature in the spectral wavelength range covering 300-900 nm to a resolution of 0.1 nm using JASCO Model V-670 UV-vis-NIR spectrophotometer. The electron spin resonance (ESR) spectra of the fine powders of the samples were recorded at liquid nitrogen temperature on IEOL IES-TES100 X-band EPR spectrometer. The dielectric measurements were carried out on LCR Meter (Hewlett-Packard Model-4263 B) in the frequency range 10²-10⁵ Hz and in the temperature range 30-300 °C. The accuracy in the measurement of dielectric constant is ~0.001 and that of loss is $\sim 10^{-4}$

3. Results

From the measured values of density d and calculated average molecular weight \overline{M} , various physical parameters such as silver ion concentration N_i and mean silver ion separation r_i of these glasses are evaluated using the conventional formulae and are presented in Table 1.

Fig. 1 represents and X-ray diffraction pattern for some of the LiF-TiO₂-P₂O₅:Ag₂O glass samples, respectively. We have also recorded SEM pictures of these samples. Both the studies indicate virtually no crystallinity in the samples. Fig. 2 represents the optical absorption spectra of LiF-TiO₂-P₂O₅:Ag₂O glasses recorded at room temperature in the wavelength region 300–900 nm. The absorption edge observed at 313 nm for glass A_0 (silver free glass) is shifted towards slightly higher wavelength side with increase in the concentration of Ag₂O up to 1.0 mol %. The spectrum of glass A₀ exhibited two clearly resolved absorption bands at about 515 and 673 nm due to $^2B_{2g} \rightarrow ^2B_{1g}$ and $^2B_{2g} \rightarrow ^2A_{1g}$ transitions of Ti^{3+} ions, respectively [17]; with gradual increase in the concentration of Ag₂O up to 1.0 mol%, the half width and intensity of these bands are observed to increase with the shifting of meta centers towards slightly higher wavelength (Table 2). However, when the concentration of Ag₂O is raised beyond 1.0 mol%, a considerable decrease in the intensity of absorption of these bands is observed.

Table 2 Summary of data on optical absorption spectra of LiF-TiO_2-P_2O_5:Ag_2O glasses.

Fig. 1. XRD patterns of LiF-TiO₂-P₂O₅:Ag₂O glasses.

Fig. 2. Optical absorption spectra of LiF–TiO $_2-P_2O_5$ glasses doped with different concentrations of Ag $_2O.$

From the observed absorption edges, we have evaluated the optical band gaps (E_0) of these glasses by drawing Urbach plot between $(\alpha h \omega)^{1/2}$ and $h \omega$ as per the equation:

$$\alpha(\omega)\hbar\omega = C(\hbar\omega - E_0)^2 \tag{1}$$

Fig. 3 represents the Urbach plots of all these glasses in which a considerable part of each curve is observed to be linear. The values of optical band gap (E_0) obtained from the extrapolation of

Glass	Cut-off wavelength (nm)	$^{2}B_{2} \rightarrow {}^{2}E\left(nm\right)$	$^2B_2 \rightarrow {}^2B_1 \ (nm)$	Optical band gap (eV)	Crystal field strength D_q (cm ⁻¹)
A ₀	313	673	516	3.66	1712
A ₂	322	675	522	3.50	1699
A ₄	334	676	531	3.34	1681
A ₆	348	678	536	3.18	1672
A ₈	365	680	539	3.00	1669
A ₁₀	381	684	547	2.82	1645
A ₁₂	372	680	541	3.06	1656
A ₁₅	355	676	536	3.22	1670

Fig. 3. Urbach plots to evaluate energy band gaps for LiF–TiO $_2$ –P $_2O_5$:Ag $_2O$ glasses.

Fig. 4. ESR spectra of LiF–TiO₂–P₂O₅:Ag₂O glasses recorded at room temperature.

these curves are presented in Table 2; the value of E_0 is found to decrease with increase in the concentration of Ag₂O up to 1.0 mol%; for further increase of Ag₂O, the value of E_0 is observed increase.

Fig. 4 represents the ESR spectra of LiF–TiO₂–P₂O₅:Ag₂O glasses recorded at room temperature. The spectrum of each sample consists of a triplet pattern with an intense spectral line centered at about g = 1.935 followed by two small satellites at g = 1.961 and 1.973. The signal of the sample A₁₀ is observed to be more intense with larger half width.

Fig. 5. IR spectra of LiF-TiO₂-P₂O₅:Ag₂O glasses.

The infrared transmission spectrum of silver free LiF–TiO₂–P₂O₅ glasses (Fig. 5) exhibits vibrational bands at 1294 cm⁻¹ (identified due to anti-symmetrical vibrations of PO₄⁻ groups; this region may also consist of bands due to P=O stretching vibrations), 1040 cm⁻¹ (a normal vibrational mode in PO₄³⁻ group arising out of ν_3 -symmetric stretching), 901 cm⁻¹ (due to P–O–P asymmetric bending vibrations) and another band at 785 cm⁻¹ due to P–O–P symmetric stretching vibrations, this region may also consist of bands due to pyrophosphate groups (P₂O₇⁴⁻) [18-20]. Additionally, the spectra have exhibited two prominent bands one at 726 cm⁻¹ due to Ti–O–Ti symmetric stretching vibrations of TiO₄ units and another at 636 cm⁻¹ due to the vibrations of TiO₆ structural units [21,22]. The summary of the data on the positions of various bands of IR spectra is presented in Table 3.

With the introduction of Ag_2O up to 1.0 mol%, the intensity of the bands due to $PO_4{}^{3-}$ groups, P–O–P symmetric stretching and TiO₄ units, is observed to decrease with a shift in the band positions towards slightly higher wavenumber; the intensity and the position of P–O–P asymmetric bending vibrational band and the bands due

Table 3

 $Summary of the data on band positions (cm^{-1}) of various absorption bands in the IR spectra of LiF-TiO_2-P_2O_5: Ag_2O glasses.$

Structural unit (nm)	Glass A ₀	Glass A ₂	Glass A ₄	Glass A ₆	Glass A ₈	Glass A ₁₀	Glass A ₁₂	Glass A ₁₅
PO ₂ ⁻ asymmetric groups/P=O stretching	1294	1290	1287	1282	1278	1274	1277	1280
PO ₄ ^{3–} groups	1040	1044	1046	1045	1051	1055	1053	1048
P–O–P asymmetric bending	901	897	893	890	886	882	885	889
P–O–P symmetric stretching	785	787	789	792	796	798	796	794
TiO ₄	726	731	736	738	741	744	742	739
TiO ₆	636	629	622	615	611	605	608	613

Fig. 6. Variation of dielectric constant and dielectric loss with frequency at room temperature for LiF–TiO₂–P₂O₅:Ag₂O glasses.

to P=O stretching vibrations and TiO_6 structural units exhibited an increasing trend in this concentration range of Ag₂O. Nevertheless, when the concentration of dopant is increased beyond 1.0 mol% a reversal trend in the intensity of these bands has been observed. It may be noted here that the band positions of various phosphate structural groups observed for the present glass samples are found to be well within the ranges reported in the literature [23,24].

The dielectric constant ε' and loss tan δ at room temperature (30 °C) of silver free glass at 100 kHz are measured to be 5.4 and 0.004, respectively. The values of ε' and tan δ of all the samples are found to increase considerably with decrease in frequency. Fig. 6 represents the variation of dielectric constant and loss of LiF–TiO₂–P₂O₅ glasses doped with different concentrations of Ag₂O with frequency, measured at room temperature; the parameters, ε' and tan δ are observed to increase with the concentration of Ag₂O up to 1.0 mol% and for further increase of Ag₂O the vales of these parameters observed to decrease.

The temperature dependence of ε' at different frequencies for one of the glasses, viz., A₆, and that of the glasses doped with different concentrations of Ag₂O at 1 kHz are shown in Fig. 7. The value of ε' is found to exhibit a considerable increase at higher temperatures especially at lower frequencies; the rate of increase of ε' with temperature is found to be the highest for the glass containing 1.0 mol% of Ag₂O.

The temperature dependence of $\tan \delta$ of glass A₈ (glass containing 0.8 mol% of Ag₂O) at different frequencies (as an inset) and a comparison plot of variation of $\tan \delta$ with temperature, measured at a frequency of 10 kHz are presented in Fig. 8. The curves have exhibited distinct maxima; with increasing frequency the temperature maximum shifts towards higher temperature and with increasing temperature the frequency maximum shifts towards higher fre-

Fig. 7. Comparison plot of variation of dielectric constant with temperature measured at 1 kHz for LiF–TiO₂–P₂O₅:Ag₂O glasses. Inset shows the variation of dielectric constant with temperature for the glass A_6 at different frequencies.

quency, indicating the dielectric relaxation character of dielectric losses of these glasses. Further, the observations on dielectric loss variation with temperature indicate an increase in the broadness and $(\tan \delta)_{max}$ of relaxation curves with a shift of $\tan \delta_{max}$ towards lower temperature with increase in the concentration of Ag₂O up to 1.0 mol%.

The effective activation energy W_d , for the dipoles is evaluated for all the glasses using the relation:

$$f = f_0 \,\mathrm{e}^{-W_{\mathrm{d}}/kT},\tag{2}$$

and furnished in Table 4 along with other pertinent data on dielectric loss. The activation energy is found to be the lowest for the glass A_{10} .

The ac conductivity σ_{ac} is calculated at different temperatures using the equation:

$$\sigma_{\rm ac} = \omega \varepsilon_0 \, \varepsilon' \, \tan \delta \tag{3}$$

Table 4

Summary of data on dielectric loss of LiF-TiO₂- P_2O_5 :Ag₂O glasses.

Glass	Temperature region of relaxation (°C)	$(\tan \delta_{\max})_{avg}$	Activation energy for dipoles (eV)
A ₀	119–140	0.0074	3.86
A ₂	114–130	0.0091	3.50
A ₄	99–122	0.0112	3.34
A ₆	87-110	0.0134	3.26
A ₈	80-106	0.0156	3.14
A ₁₀	60-90	0.0183	2.98
A ₁₂	70–95	0.0165	3.25
A ₁₅	85-107	0.0143	3.38

Fig. 8. A comparison plot of variation of dielectric loss with temperature measured at 10 kHz for LiF–TiO₂–P₂O₅:Ag₂O glasses. Inset shows the variation of dielectric loss with temperature at different frequencies for the glass A₈.

(where ε_0 is the vacuum dielectric constant) for different frequencies and the plot of $\log \sigma_{\rm ac}$ against 1/T for all the glasses at 100 kHz is shown in Fig. 9 and at different frequencies for one of the glasses (glass A₄) is shown as inset (a) of the same figure, the conductivity is found to increase considerably with increase in the concentration of Ag₂O up to 1.0 mol% at any given frequency and temperature. From these plots, the activation energy for the conduction in the high temperature region over which a near linear dependence of $\log \sigma_{\rm ac}$ with 1/T could be observed is evaluated and presented in Table 5; the activation energy is found to decrease with increase of Ag₂O content up to 1.0 mol% in the glass matrix.

4. Discussion

LiF–TiO₂–P₂O₅:Ag₂O glasses have a complex composition and are admixtures of network formers and modifiers. Normally, the structure of the simple phosphate glasses is dependent on O/P ratios and the fraction of Q phosphate tetrahedra. For single P₂O₅ glass O/P=2.5 and the glass network is build up of Q³ tetrahedra

Table 5Summary of data on a.c. conductivity of LiF-TiO2-P2O5:Ag2O glasses.

Glass	$N(E_{\rm F})$ in 10^{21}	eV ⁻¹ /cm ³		Activation energy	
	Austin	Butcher	Pollack	for conduction (eV)	
A ₀	0.728	0.303	0.740	0.47	
A ₂	0.871	0.363	0.885	0.44	
A ₄	1.043	0.435	1.059	0.32	
A ₆	1.225	0.511	1.245	0.31	
A ₈	1.437	0.599	1.460	0.30	
A ₁₀	1.636	0.682	1.662	0.29	
A ₁₂	1.540	0.642	1.564	0.31	
A ₁₅	1.342	0.560	1.363	0.33	

Fig. 9. Variation of σ_{ac} with 1/T for LiF–TiO₂–P₂O₅:Ag₂O glasses at the frequency of 100 kHz. Inset (a) shows variation of σ_{ac} with 1/T at different frequencies for the glass A₄ and inset (b) shows variation of σ_{ac} with the activation energy for conduction.

with the bridging oxygens; and with the fourth oxygen doubly bonded to the phosphorus atom. With the addition of titanium oxide, an ultraphosphate network consisting of Q^2 and Q^3 tetrahedra may form [25]. LiF and Ag₂O are well known modifier oxides and enter the glass network either by rupturing or by breaking up the P–O–P structures. In turn, the break-up of the P–O–P structures introduces coordinated defects, known as dangling bonds, along with non-bridging oxygen ions. It is also quite likely that Ag⁺ ions cause a change from the pure covalent bonds of PO₄ cluster to the substantial admixture of the ionic component similar to Li–F [16].

Titanium ions are expected to exist mainly in Ti^{4+} state in LiF–TiO₂–P₂O₅:Ag₂O glass network. However, the reduction of Ti^{4+} to Ti^{3+} appears to be viable during melting, annealing and crystallization processes of the glasses. Earlier reports on some other glass systems containing TiO_2 suggested that upon heating at about 700 °C, there is a possibility for the reduction of Ti^{4+} ions to Ti^{3+} ions [26]. Further, the reduction, $Ti^{4+} + e^- = Ti^{3+}$, takes place only with energy $E^0 = 0.2$ V. The speciation of titanium ions in these glasses is controlled by the reversible reaction:

$$4\mathrm{Ti}_{\mathrm{atm}}^{4+} + 2\mathrm{O}_{\mathrm{melt}}^{2+} \rightleftharpoons 4\mathrm{Ti}_{\mathrm{melt}}^{3+} + 2\mathrm{O}_{2\,\mathrm{melt}\,\mathrm{atm}}$$

The Ti⁴⁺ ions occupy both tetrahedral and substitutional octahedral sites as corner-sharing $[TiO_6]^{2-}$ units where as Ti³⁺ ions occupy only modifying positions in the glass network. TiO₄ and TiO₆ units of Ti⁴⁺ ions enter the glass network, may alternate with PO₄ structural units and form linkages of P–O–Ti type. The entry of TiO₂ into lithium fluoro phosphate glass network as was reported in other

alkali phosphate glasses may be visualized as follows:

Entry of TiO₆ octahedral in to LiF-TiO₂-P₂O₅:Ag₂O glass network may twist or distort the interconnected chains of PO₄ units and increase the randomness of the glass network.

The ingress of Ag⁺ ions are expected to modify P-O-Ti and Ti-O-Ti linkages as

$$P\text{-}O\text{-}Ti \,+\, Ag_2O \,\rightarrow\, P\text{-}O\text{-}Ag^+ \,+\, Ti\text{-}O \,-\, Ag^+$$

or

As a consequence a disruption in the PO₄ and TiO₄ tetrahedra with the creation of a number of bonding defects are expected.

Using Tanabe–Sugano diagrams for d¹ ions, the bands observed in the optical absorption spectra in the regions 510-550 nm and 670–685 nm are assigned to $^2B_{2g} \rightarrow {}^2B_{1g}$ and $^2B_{2g} \rightarrow {}^2A_{1g}$ transitions of 3d¹ electron of the Ti³⁺ ions, respectively. With the gradual increase in the concentration of dopant Ag₂O up to 1.0 mol% in the sample, these bands have exhibited red shift with increasing intensity. So one can conclude that: (i) an increase in the concentration of Ti³⁺ ions or decrease in the concentration of Ti⁴⁺ ions and (ii) weaker ligand field of existing Ti³⁺ ions in these samples. The ligand field parameter D_q (crystal field strength) is evaluated using energies of these transitions and the values obtained are furnished in Table 2. The variation of the parameter D_q with the concentration of Ag₂O exhibited the lowest value for the glass A₁₀. This dependence is just similar to optical band gap.

As mentioned earlier, Ag⁺ ions and the octahedrally coordinated Ti³⁺ ions act as modifiers similar to lithium ions and induce non-bridging oxygens (NBOs) in the glass network. The higher the concentration of these modifier ions, the higher is the concentration of NBOs in the glass matrix. Because of these reasons an increase in the degree of localization of electrons there by an increase in the donor centers in the glass network is expected. The gradual increase in the concentration of Ag⁺ ions and Ti³⁺ ions causes a creation of large number of donor centers; subsequently, the excited states of localized electrons originally trapped on Ti³⁺ sites begin to overlap with the empty 3d states on the neighboring Ti⁴⁺ sites. As a result, the impurity band becomes more extended into the main band gap. This development might have shifted the absorption edge to the lower energy (Table 2) which leads up to a significant shrinkage in the band gap as observed.

The higher concentration of Ti⁴⁺ ions that participate in the glass network, the lower is the concentration of NBOs in the glass matrix. Because of this reason a decrease in the degree of localization of electrons or a decrease in the donor centers in the glass-ceramic network is expected. The presence of smaller concentration of these donor centers increases the optical band gap and shifts the absorption edge towards lower wavelength side as observed for the glasses A12 and A15

spectrum the central line at g = 1.94 is due to tetragossed octahedral sites of Ti³⁺ ions with $|xy\rangle$ ground state

$$[TiO_{6/2}]^{2-} + 2[PO_{4/2}]^{+}$$

[27,28] where as the auxiliary components are due to the hyperfine interaction of an unpaired electron with two equivalent I = 1/2nuclear spins. Based up on the earlier reports [29,30], it seems reasonable to attribute the observed triplet to TiF²⁺ molecular ion. The relatively highest intensity and half-width of the signal observed for the spectrum of the sample A₁₀ suggests a larger concentration of reduced Ti⁴⁺ ions in to Ti³⁺ ions in this sample.

The IR spectra of these glasses appears to be dominated by orthophosphate structural units; however, the band due to pyrophosphate structural units lies around 1090 cm⁻¹, which is not too far from the band position of PO₄^{3–} units. Hence the observed band at about 1050 cm⁻¹ in the spectra of these glasses may be considered as the superposition of these two bands, especially in the spectrum of more disordered glass. The same is true for metaphosphate groups also, because the band due to these groups is expected at about $1280 \,\mathrm{cm}^{-1}$ [31].

If silver and trivalent titanium ions act as modifiers, the π -bond of P=O may be ruptured, creating new non-bridging oxygens. Even if Ti⁴⁺ ions enter substitutional positions with octahedral units in the glass network, the PO₄ structural units are subjected to perturbations (like bonding, compression and chemical interactions) due to change in the environment and the incompatibility in ion size. As a result, PO₄ structural units undergo structural distortions involving changes in bond lengths and angles of P-O bonds. For these reasons we expect decrease in the intensity, PO₄^{3–} symmetric stretching and a band due to P-O-P symmetric/Ti-O-P stretching vibrations in the IR spectra. The observed gradual decrease in the intensity of these bands in the spectra of the glasses A_0-A_{10} may be ascribed to these reasons. The observed increase in the intensity of these symmetrical bands and simultaneous decrease in the intensity of the bands due to P–O–P asymmetric vibrations in the spectra of the glasses A₁₀-A₁₅ suggests that, in the networks of these glasses, the titanium ions mostly occupy tetrahedral positions and their positions are less disturbed by silver ions.

In general, the dielectric constant of a material is due to electronic, ionic, dipolar and space charge polarizations. Out of these, the space charge contribution depends on the perfection of the glasses. Recollecting the data, on dielectric properties, for LiF-TiO₂-P₂O₅:Ag₂O glasses, the slight increase in the dielectric constant and loss at room temperature, particularly at low frequencies can be ascribed to the defects produced in the glass network that contribute to the space charge polarization. With the gradual increase of Ag₂O up to 1.0 mol% in the glass network, the values of ε' , tan δ and σ_{ac} are found to increase at any frequency and temperature and the activation energy for a.c. conduction is observed to decrease; such variations of these parameters are obviously due to larger space charge polarization owing to the enhanced degree of disorder in the glass network.

To be more specific, the concentration of Ag₂O is increased up to 1.0 mol% in the glass network, there is a growing presence of Ti³⁺ ions in the glass network; these ions similar to Li⁺ and Ag+ ions disrupt the glass network as mentioned earlier. The defects thus

Fig. 10. Comparison plot of ε' and ε'' with 1/T for the sample A₁₀ measured at 1 kHz for LiF–TiO₂–P₂O₅:Ag₂O glasses.

produced create easy path ways for the migration of charges that would build up space charge polarization leading to an increase in the dielectric parameters as observed. The data on the dielectric properties of LiF–TiO₂–P₂O₅:Ag₂O glasses further, indicate a gradual decrease in the dielectric parameters with increase in the concentration of Ag₂O from 1.0 to 1.5 mol%; these results suggest that there is a decrease in the concentration of free charge carriers that build up space–charge polarization [32,33] and support the view point that there is a growing presence of titanium ions that participate in the network forming with TiO₄ structural units.

Conventionally, the dielectric relaxation effects are described with the variable frequency at a fixed temperature. However, similar information can also be obtained by analyzing these results at a fixed frequency at variable temperature as suggested by Bottcher and Bordewijk [34]. Substituting Eq. (2) in the standard Debye dielectric relaxation relations, one obtains:

$$\varepsilon'(\omega, T) = \varepsilon_{\infty} + \frac{1}{2}(\varepsilon_{s} - \varepsilon_{\infty}) \left\{ 1 - tgh\left[\frac{E_{a}(1/T - 1/T_{m}(\omega))}{k}\right] \right\}$$
(4)

$$\varepsilon''(\omega,T) = \frac{(1/2)(\varepsilon_s - \varepsilon_\infty)}{\cosh[E_a(1/T - 1/T_m(\omega))/k]}$$
(5)

In these equations $T_{\rm m}(\omega)$ is the temperature at $(\varepsilon')_{\rm max}$. Thus, as per Eqs. (4) and (5), the plots of $\varepsilon'(\omega, T)$ and $\varepsilon''(\omega, T)$ against 1/Tshould be centro symmetric and symmetric curves, respectively in the dielectric relaxation region. As an example for one of the glass samples (viz., A₁₀) under investigation, the variation of $\varepsilon'(\omega, T)$ and $\varepsilon''(\omega, T)$ with 1/T are shown in Fig. 10. The shape of these curves is well in accordance with Eqs. (4) and (5) and clearly confirms the relaxation character of dielectric properties of these glasses. Earlier studies on the glasses containing d¹ ions like W⁵⁺, Cr⁵⁺, V⁴⁺, Mo⁵⁺

Fig. 11. Isotherms of ac conductivity as a function of Ag_2O in the high temperature region for LiF–TiO₂–P₂O₅:Ag₂O glasses. Inset shows the variation of activation energy with the concentration of Ag₂O.

showed that these ions contribute to the dielectric relaxation effects [35–38]; hence, the observed relaxation effects in the present glass samples can safely be attributed to Ti^{3+} ions. The increase in the breadth and the intensity of the relaxation peaks and the decrease in the activation energy for dipoles is the manifestation of increase in the concentration of Ti^{3+} ions with increase in Ag₂O content in the glass matrix.

When $\log \sigma(\omega)$ is plotted as a function of activation energy for conduction (in the high temperature region) a near linear relationship is observed (see inset (b) of Fig. 9). This observation suggests that the conductivity enhancement is directly related to the thermally stimulated mobility of the charge carriers in the high temperature region [39].

The conductivity curve as a function of Ag₂O concentration passes through a maximum at $x = 1.0 \mod \%$ (Fig. 11). The activation energy for conduction as a function of the concentration of Ag₂O, exhibited a minimum x = 1.0 mol% (see inset (a) of Fig. 9). Thus Fig. 11 and its inset suggest a kind of transition from predominantly ionic (zone-I, for 0 < x < 1.0 mol%) to electronic (zone-II for x > 1.0 mol%) conductivity [40]. The gradual increasing contents of the modifier ions Ag⁺ and Ti³⁺ ions, the active centres for ionic conduction, the highly mobile lithium ions or the non-bridging oxygens become closer and the ionic transport progressively increases. On the other hand in the zone-II, the mobile electrons, or polarons, involved in the process of transfer from Ti³⁺ to Ti⁴⁺, are attracted by the oppositely charged Ag⁺ and/or Li⁺ ions. This cation-polaron pair moves together as a neutral entity. As expected, the migration of this pair is not associated with any net displacement of the charge and thus does not contribute to electrical conductivity [41]; in consequence a decrease in the conductivity results, as observed.

The low temperature part of the conductivity (a near temperature independent part, as in the case of present glasses up to nearly 350 K) can be explained on the basis of quantum mechanical model [42]. The equation for a.c. conductivity due to quantum mechanical tunneling is given by [42]:

$$\sigma(\omega) = \eta e^2 KT [NE_{\rm F}]^2 \alpha^{-5} \omega \left[\ln \frac{\nu_{\rm ph}}{\omega} \right]^4 \tag{6}$$

From Eq. (6), the value of $N(E_{\rm F})$, i.e. the density of the defect energy states near the Fermi level is evaluated, taking the value of α (electronic wave function decay constant) as $0.486 (\text{\AA})^{-1}$ (obtained by plotting log $\sigma_{\rm ac}$ against $R_{\rm i}$), e is the charge of the electron, k is the Boltzmann constant, ω is the frequency and $\nu_{\rm ph}$ the phonon frequency (5 × 10¹² Hz) and η is a constant and its value is given by

 $\eta = \pi/3$ [42], =3.66 $\pi^2/6$ [43], = $\pi^4/96$ [44] is computed for a frequency of 10⁵ Hz at T=333 K and presented in Table 5. The value of $N(E_{\rm F})$ is found to increase with increase in the concentration of Ag₂O up to 1.0 mol%. Such increase also suggests an increasing disorder in the glass network with increase in the concentration of Ag₂O up to this concentration.

5. Conclusions

The summary of the results of various studies of LiF–TiO₂–P₂O₅ glasses doped with different concentrations of Ag₂O is as follows: Optical absorption and ESR spectral studies indicated that titanium ions in these glasses exist in trivalent state in addition to and tetravalent state. These studies have also revealed that the concentration of Ti³⁺ ions increases gradually with increases in the concentration of Ag₂O. IR spectral studies indicated that titanium ions exist in tetrahedral and octahedral substitutional positions and form P–O–Ti linkages. The entry of Ag⁺ ions causes formation of P–O[–]Ag⁺ and Ti–O[–]Ag⁺ complexes in the glass network. The results of dielectric studies exhibited dielectric relaxation effects and these effects are attributed to Ti³⁺ ions. The analysis of a.c. conductivity in the high temperature region indicated that with in the concentration range of 0 to 1.0 mol% of Ag₂O, the conductivity is mainly ionic in nature.

References

- N. Vedeanu, O. Cozar, I. Ardelean, B. Lendl, D.A. Magdas, Vibr. Spectrosc. 48 (2008) 259.
- [2] S. Daoudi, L. Bejjit, M. Haddad, M.E. Archidi, A. Chahine, M. Et-tabirou, P. Molinié, Spectrosc. Lett. 40 (2007) 785.
- [3] P. Subbalakshmi, P.S. Sastry, N. Veeraiah, Phys. Chem. Glasses 42 (2001) 307.
- [4] U. Hoppe, R.K. Brow, B.C. Tischendorf, P. Jovari, A.C. Hannon, Phys. Condens. Matter 18 (2006) 1847
- [5] A.J. Parsons, C.D. Rudd, J. Non-Cryst. Solids 354 (2008) 4661.
- [6] D. Chakravorty, D. Kumar, Phys. Status Solidi (a) 51 (2006) 275.
- [7] G. Little Flower, M. Srinivasa Reddya, M.V. Ramana Reddy, N. Veeraiah, Z. Natur-
- forsch. 62a (2007) 315. [8] X. Li, X. Wang, D. He, J. Shi, Mater. Chem. 18 (2008) 4103.
- [9] Z.A. Talib, W.M. Daud, E.Z.M. Tarmizi, H.A.A. Sidek, W.M.M. Yunus, J. Phys. Chem.
- Solids 69 (2008) 1969.
- [10] B.H. Choi, M.J. Ji, Y.T. An, Y.S. Ko, Y.H. Lee, J. Korean, Ceram. Soc. 45 (2008) 459.

- [11] A. Shaim, M. Et-tabirou, Mater. Chem. Phys. 80 (2003) 63.
- [12] G.M. Krishna, N. Veeraiah, N. Venkatramaiah, R. Venkatesan, J. Alloys Compd. 450 (2008) 477.
- [13] P. Nageswara Rao, C. Laxmi Kanth, D. Krishna Rao, N. Veeraiah, J. Quant. Spectrosc. Radiat. Transfer 95 (2008) 37.
- [14] I.V. Kityk, A. Majchrowski, J. Ebothe, B. Sahraoui, Opt. Commun. 236 (2004) 123.
- [15] S.S. Das, N.B. Singh, Mater. Res. Bull. 43 (2008) 3008.
- [16] K. Sambasiva Rao, M.S. Reddy, V.R. Kumar, N. Veeraiah, Mater. Chem. Phys. 111 (2008) 283.
- [17] Y. Watanabe, M. Ohnishi, T. Tsuchiya, Appl. Phys. Lett. 66 (1995) 3431.
- [18] D.K. Durga, N. Veeraiah, J. Phys. Chem. Solids 64 (2003) 133.
- [19] J.J. Hudgens, S.W. Martin, J. Am. Ceram. Soc. 76 (1994) 1691.
- [20] P. Subbalakshmi, N. Veeraiah, J. Non-Cryst. Solids 298 (2002) 89.
- [21] A. Shaim, M. Et-Tabirou, Mater. Chem. Phys. 80 (2003) 63;
 A. Shaim, M. Et-Tabirou, Mater. Res. Bull. 37 (2002) 2459.
- [22] B.V. Raghavaiah, C. Laxmikanth, N. Veeraiah, Opt. Commun. 235 (2004) 341.
- [23] F.F. Sene, J.R. Martinelli, L. Gomes, J. Non-Cryst. Solids 348 (2004) 30.
- [24] P. Subbalakshmi, N. Veeraiah, Phys. Chem. Glasses 42 (2001) 307.
- [25] M. Karabult, E. Metwalli, D.E. Day, R.K. Brow, J. Non-Cryst. Solids 328 (2003)
- 199.[26] B.V.R. Chowdari, G.V. Subba Rao, G.Y.H. Lee, X.P. Sand, Solid State Ionics 136 (2000) 1067.
- [27] I. Abrahams, E. Hadzifejzovic, Solid State Ionics 134 (2000) 249.
- [28] R. Balaji Rao, D. Krishna Rao, N. Veeraiah, Mater. Chem. Phys. 87 (2004) 357.
- [29] L. Barbieri, A.B. Corradi, C. Leonelli, C. Siligardi, T. Manfrédini, G.C. Péllacani, Mater. Res. Bull. 32 (1997) 637.
- [30] M.E. Lines, Phys. Rev. B 43 (1991) 11978.
- [31] X. Fang, C.S. Ray, A. Mogus-Milankovic, D.E. Day, J. Non-Cryst. Solids 283 (2001) 162.
- [32] N. Krishna Mohan, K. Sambasiva Rao, Y. Gandhi, N. Veeraiah, Physica B 389 (2007) 213.
- [33] A. Veerabhadra Rao, C. Laxmikanth, N. Veeraiah, J. Phys. Chem. Solids 67 (2006) 2263.
- [34] C.J.F. Bottcher, P. Bordewijk, Theory of Electric Polarization, Elsevier, Oxford, 1978.
- [35] G. Murali Krishna, B. Anila Kumari, M. Srinivasa Reddy, N. Veeraiah, J. Solid State Chem. 180 (2007) 2747.
- [36] R.M. Abdelouhab, R. Braunstein, K. Baerner, J. Non-Cryst. Solids 108 (1989) 109.
 [37] L. Srinivasa Rao, M. Srinivasa Reddy, D. Krishna Rao, N. Veeraiah, J. Solid State Sci., 10.1016/j.solidstatesciences.2008.06.022.
- [38] M. Srinivasa Reddy, S.V.G.V.A. Prasad, N. Veeraiah, Phys. Status Solidi (a) 204 (2007) 816.
- [39] G. El-Damarawi, J. Phys. Condens. Matter 7 (1995) 1557.
- [40] R.A. Montani, M.A. Frechero, Solid State Ionics 158 (2003) 327.
- [41] J.C. Bazan, J.A. Duffy, M.D. Ingram, M.R. Mallace, Solid State Ionics 86 (1996) 497.
- [42] I.G. Austin, N.F. Mott, Adv. Phys. 18 (1969) 657.
- [43] P. Butcher, K. Hyden, J. Philos. Mag. 36 (1977) 657.
- [44] M. Polak, Philos. Mag. 23 (1971) 519.