

Effect of magnetic field on the visible light emission of V2O5 nanorods

Yin Hu, Zhengcao Li, Zhengjun Zhang, and Daqiao Meng

Citation: Appl. Phys. Lett. **94**, 103107 (2009); doi: 10.1063/1.3095502

View online: http://dx.doi.org/10.1063/1.3095502

View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v94/i10

Published by the American Institute of Physics.

Related Articles

Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry

Appl. Phys. Lett. 101, 183104 (2012)

Near-infrared enhanced carbon nanodots by thermally assisted growth

Appl. Phys. Lett. 101, 163107 (2012)

Nanocluster Si sensitized Er luminescence: Excitation mechanisms and critical factors for population inversion Appl. Phys. Lett. 101, 141907 (2012)

Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode J. Appl. Phys. 112, 074313 (2012)

High energy-resolution electron energy-loss spectroscopy study on the near-infrared scattering mechanism of Cs0.33WO3 crystals and nanoparticles
J. Appl. Phys. 112, 074308 (2012)

Additional information on Appl. Phys. Lett.

Journal Homepage: http://apl.aip.org/

Journal Information: http://apl.aip.org/about/about_the_journal Top downloads: http://apl.aip.org/features/most_downloaded

Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

Effect of magnetic field on the visible light emission of V₂O₅ nanorods

Yin Hu,¹ Zhengcao Li,¹ Zhengjun Zhang,^{1,a)} and Daqiao Meng²

Department of Materials Science and Engineering, Advanced Materials Laboratory, Tsinghua University, Beijing 100084, People's Republic of China

²National Key Laboratory for Surface Physics and Chemistry, Mianyang, Sichuan 621907, People's Republic of China

(Received 19 January 2009; accepted 14 February 2009; published online 11 March 2009)

 V_2O_5 nanorods with remarkable visible light emission were synthesized by heating a V_2O_3 thin film in air at $\sim 530~^{\circ}$ C due to the involvement of oxygen defects. The density of defects in the nanorods can be decreased by applying a magnetic field of 5 T during this transition, resulting in drastic decrease in the intensity of the photoluminescence of the V_2O_5 nanorods. The dependence of the defect removal on the magnetic field and the mechanism for this influence were also investigated. © 2009 American Institute of Physics. [DOI: 10.1063/1.3095502]

Due to its outstanding properties, such as photochromic, catalytic, chemical sensing properties, etc., vanadium pentoxide (V₂O₅) has been applied in various fields, e.g., electronic information displays, electrochromic/color memory devices, optical-electrical switch, etc. 1,2 Thus lots of efforts have been focused on the synthesis and properties of the family of vanadium oxides in the past years.^{3,4} Recently, the synthesis of nanostructures of vanadium oxides has attracted great attention as materials at such tiny dimensions could possess properties that are different from their bulk states and attractive to nanodevices, and several approaches have been developed, for instance, the sol-gel reaction method for VO_r nanotubes,⁵ the solid-reaction and sol-electrophoretic deposition for V₂O₅ nanofibers/nanorods, the thermal oxidation approach for synthesizing arrays of aligned VO2 nanorods, etc.

An alternative approach to produce single crystalline V_2O_5 nanorods is by oxidizing a V_2O_3 film in air at $\sim 500\,^{\circ}$ C. By this method V_2O_5 nanorods were grown from the film during the oxidation of $V_2O_3 \rightarrow V_2O_5$. The nanorods exhibited photoluminescence (PL) in the visible range due to the involvement of oxygen defects. This is interesting as V_2O_5 has not been considered as a candidate material for light emitting before. Thus it is of interest to study the defect-property relationship of V_2O_5 nanorods and devise ways to control the defects in the nanorods to adjust the light-emitting properties.

In this letter, we report our investigation on the influence of a strong magnetic field on the nanorod growth and defect involvement during the $V_2O_3 \rightarrow V_2O_5$ transition by the above approach. Our study revealed that applying a strong magnetic field during the growth could be an effective way to control the defects in nanomaterials.

The substrates used in this study were Si (001) wafers. These were supersonically cleaned in acetone, alcohol, and de-ionized water baths in sequence and then dried with a gentle nitrogen blow. Films of V_2O_3 with a thickness of $\sim\!300$ nm were first deposited on the silicon substrates using a thermal oxidation process reported earlier, $^{9-11}$ and then annealed in air at 530 $^{\circ}\text{C}$ for 1 h, during which V_2O_3 films

were oxidized further and transformed into single crystalline V_2O_5 nanorods. To investigate the effect of magnetic fields on V_2O_5 nanorod growth, a static field of 5 T generated by a superconducting magnet system (JMTD-10T150) was applied in the oxidation processing, along directions set at 0°, 20° , 40° , 60° , and 90° from the surface normal of the substrate. The morphology and structure of the as-deposited V_2O_3 films and those after further oxidation were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM), Raman spectrometer, and x-ray diffraction (XRD), respectively. The PL property of these samples was also evaluated using a Raman spectrometer.

The as-deposited films were consisted of pyramidshaped V₂O₃ particles with a size of several hundred nanometers [see Fig. 1(a) and the inset of Fig. 1(b)]. After thermal annealing in air at 530 °C for 1 h, the V₂O₃ particles were further oxidized into V₂O₅ and transformed into nanorods, ~ 1 µm long and several hundred nanometers in diameter [see Fig. 1(a) and the inset of Fig. 1(c)]. The XRD patterns shown in Fig. 1(a) were taken with a Rigaku x-ray diffractometer using the Cu $K\alpha$ radiation. PL measurements indicated that the V₂O₃ particles did not emit any light when excited by a 514 nm Ar+ laser, while the V2O5 nanorods emitted stably strong visible light [see Figs. 1(b) and 1(c)]. The PL spectrum of the V₂O₅ nanorods can be well fitted by two Gaussian peaks centered at ~650 nm (1.82 eV) and \sim 730 nm (1.68 eV), respectively [see Fig. 1(c)]. As the band gap of V_2O_5 is \sim 2.24 eV, ¹² the emissions were believed to be caused by some oxygen defects that got involved during the nanorod growth.^{8,13}

Applying a strong static magnetic field during the oxidation of $V_2O_3 \rightarrow V_2O_5$ did not influence greatly the V_2O_5 nanorod growth. Figures 2(a)–2(f) show SEM and TEM images of V_2O_5 nanorods grown from the V_2O_3 films under a 5 T magnetic field along directions of 0° , 20° , 40° , 60° , and 90° from the surface normal of the substrate, respectively. One sees that as we observed without the magnetic field [see Fig. 1(c)], V_2O_5 nanorods were grown from the V_2O_3 films in all cases. The only visible effect of the magnetic field is the slight change of the dimension of the nanorods, i.e., the size of the nanorods got reduced when the magnetic field direction (\hat{H}) was off the surface normal of the substrate (\hat{n}) . For comparison, at an angle of 0° or $\hat{H} \| \hat{n}$, the V_2O_5 rods were

a) Author to whom correspondence should be addressed. Electronic mail: zjzhang@tsinghua.edu.cn.

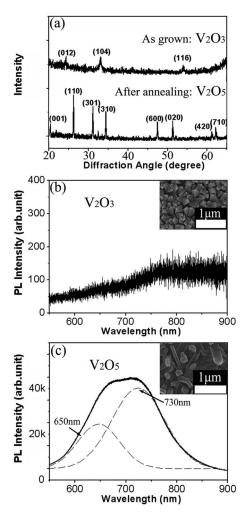


FIG. 1. (a) XRD spectra of as-deposited V_2O_3 films and those after oxidation into V_2O_5 nanorods; (b) and (c) are PL spectra of the V_2O_3 film and V_2O_5 nanorods, excited by a 514 nm Ar⁺ laser. Insets of (b) and (c) are SEM images of the as-deposited V_2O_3 particles and the V_2O_5 nanorods, respectively.

 \sim 5 μ m long and \sim 0.5 μ m in diameter [see Fig. 2(a)]; at an angle of 90° or $\hat{H} \perp \hat{n}$, the rods were \sim 1 μ m long and \sim 200 nm in diameter [see Fig. 2(e)], similar to those nanorods grown without the magnetic field. Selected area diffraction (SAD) analysis [see insets of Figs. 2(b) and 2(f)] indicated that the nanorods are single crystalline V₂O₅. Raman spectrum analysis of the nanorods (see Fig. 3) confirmed that they are V₂O₅ with an orthorhombic structure. These suggested that applying a magnetic field did not influence the crystallinity of the V₂O₅ nanorods.

However, the application of the magnetic field did change considerably the oxygen defect involvement in the nanorods and thus influenced greatly their PL properties. Figure 4(a) compares the PL spectra of V_2O_5 nanorods grown in a 5 T magnetic field of different directions. It is noticed that the visible light emission was suppressed in nanorods grown in the field with its \hat{H} close to \hat{n} , while the emission centers remained almost unchanged [see Fig. 4(b)]. As these visible light emissions are due to oxygen defects got involved during the nanorod growth, it suggests that applying a strong magnetic field could adjust the defect level in the V_2O_5 nanorods. Figure 4(c) plots the PL intensity of the nanorods versus the direction of the field, i.e., the angle between \hat{H} and

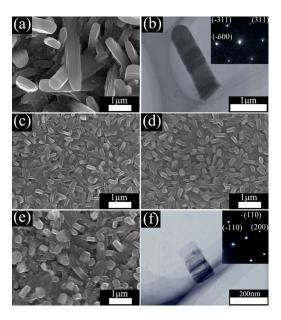


FIG. 2. (Color online) V_2O_5 nanorods synthesized in a 5 T magnetic field of different directions. (a), (c), (d), and (e) show SEM images of V_2O_5 nanorods grown at field directions of 0° , 20° , 40° , and 90° ; (b) and (f) show TEM images and corresponding SAD patterns of the V_2O_5 nanorods grown at field directions of 0° and 90° , respectively.

 \hat{n} . One sees that the intensity got decreased monotonically at decreased angles, suggesting a close relationship between the PL and the field direction. To make this relationship clear, we plotted in Fig. 4(d) the intensity of the two emissions as a function of the value of projected field on \hat{n} (i.e., H_z). From the figure one observes that the intensity is reversely related to H_z , i.e., the larger the H_z , the weaker the PL. One may also notice the difference in the two emissions influenced by the magnetic field, i.e., the emission at 730 nm was of a negative linear relationship with H_z , while the emission at 650 nm was of a negative nonlinear relationship with H_z , suggesting that the two emissions were caused by different oxygen defects. It is also suggested that the defects corresponding to the emission at 650 nm may be easily removed completely by the strong magnetic field, while it is hard to remove completely those defects corresponding to the emission at 730 nm.

The reason for the effect of the magnetic field on the defect involvement in V_2O_5 nanorods is intriguing. It has been reported that the defect intensity in silicon crystals grown from the melt was effectively decreased by introducing a static magnetic field due to the Lorentz force. ¹⁵ The Lorentz force proportional and perpendicular to the magnetic

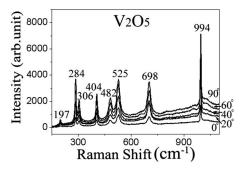


FIG. 3. Raman spectra of the samples synthesized at field directions of 0° , 20° , 40° , 60° , and 90° . All peaks fit well those of V_2O_5 .

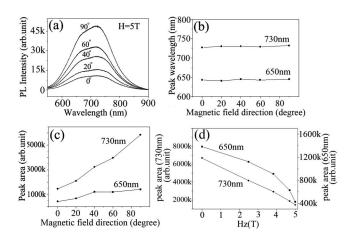


FIG. 4. (a) PL spectra of V_2O_5 nanorods synthesized in a 5 T magnetic field as a function of the field direction; (b) and (c) show, respectively, the position and intensity of the two emissions vs the field direction; (d) shows the intensity of the emissions at \sim 730 and \sim 650 nm as a function of H_2 .

field could suppress the turbulent fluctuations due to the damping action on the melt flow, thus reducing the number of the nuclei and improving the quality of the silicon crystals grown. 16 This might also be the reason for its influence on V₂O₅ nanorod growth observed here. Since the melting points of V₂O₃ and V₂O₅ are 1967 and 670 °C, respectively, V₂O₅ formed on the surface of V₂O₃ particles may melt at the temperature of 530 °C, as the melting point of nanomaterials could be reduced greatly compared with their bulk state. Thus the V₂O₅ nanorods were probably grown from the V₂O₅ melt formed on the V₂O₃ particles, similar to that observed for the Fe nanorod growth from the melt on submicron-sized Fe grains. ¹⁸ In this case the growth of V₂O₅ nanorods should be influenced by the Lorentz force similar to that observed for silicon crystal growth. 16 Since the Lorentz force is proportional to H_z , this influence should become stronger at larger H_z . This is exactly what we observed in this study.

In short, we observed that by applying a strong magnetic field during the oxidation of V_2O_3 into V_2O_5 , the defect density involved in the V_2O_5 nanorods can be influenced

greatly by increasing the projected field perpendicular to the film plane. The mechanism for the influence of the magnetic field was also discussed. This study provides a possible technique to control the defects involved in nanomaterials and thus to adjust their properties.

The authors are grateful to the financial support by the National Natural Science Foundation of China (Grant No. 10675070) and that by the National Basic Research Program of China (973 program, Grant No. 2007CB936601).

¹A. Talledo and C. G. Granqvist, J. Appl. Phys. 77, 4655 (1995).

²V. Petkov, P. Y. Zavalij, S. Lutta, M. S. Whittingham, V. Parvanov, and S. Shastri, Phys. Rev. B 69, 085410 (2004).

³S. Teranishi and K. Tarama, J. Chem. Phys. **27**, 1217 (1957).

⁴B. S. Guiton, G. Qian, A. L. Prieto, M. S. Gudiksen, and H. Park, J. Am. Chem. Soc. **127**, 498 (2005).

⁵G. R. Patzke, F. Krumeich, and R. Nesper, Angew. Chem., Int. Ed. 41, 2446 (2002).

⁶P. M. Ajayan, O. Stephan, P. Redlih, and C. Colliex, Nature (London) 375, 564 (1995).

⁷Y. Q. Wang, Z. J. Zhang, Y. Zhu, Z. C. Li, R. Vajtai, L. J. Ci, and P. M. Ajayan, ACS Nano **2**, 1492 (2008).

⁸Y. Q. Wang, Z. C. Li, X. Sheng, and Z. J. Zhang, J. Chem. Phys. **126**, 164701 (2007).

⁹Y. Zhao, J. G. Liu, Y. Zhou, Z. J. Zhang, Y. H. Xu, H. Naramoto, and S. Yamamoto, J. Phys.: Condens. Matter 15, L547 (2003).

¹⁰M. M. Zhu, W. Miao, and Z. J. Zhang, Rare Met. Mater. Eng. 35, 488 (2006).

F. Galléa, Z. C. Li, and Z. J. Zhang, Appl. Phys. Lett. 89, 193111 (2006).
 C. V. Ramana and O. M. Hussain, Adv. Mater. Opt. Electron. 7, 225

(1997).

13 M. M. Zhu, Z. J. Zhang, and W. Miao, Appl. Phys. Lett. **89**, 021915

¹⁴M. Benmoussa, E. Ibnouelghazi, A. Bennouna, and E. L. Ameziane, Thin Solid Films 265, 22 (1995).

¹⁵J. Qi and N. I. Wakayama, Phys. Fluids **16**, 3450 (2004).

¹⁶H. Ozoe, J. S. Szmyd, and T. Tagawa, *Magnetohydrodynamics: Historical Evolution and Trends*, Fluid Mechanics and Its Applications, edited by S. Molokov, R. Moreau, and H. K. Moffatt (Springer, Dordrecht, 2007), p. 375.

¹⁷M. Zhang, M. Yu. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, and T. Wisleder, Phys. Rev. B 62, 10548 (2000).

¹⁸C. Y. Pan, Z. J. Zhang, X. Su, Y. Zhao, and J. G. Liu, Phys. Rev. B 70, 233404 (2004).