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Composite films consisting of a ceramic matrix with embedded metal nanoparticles have received in-
creased interest due to their numerous potential applications in the field of optics and optoelectronics.
Numerous studies have been dedicated to the fabrication of these composite materials and it has been
shown that nanocermet films can be obtained by successive deposition of alternate dielectric and metal
films of thicknesses opportunely chosen. In this case, stacks of dielectric layers alternated with layers of
metal nanoclusters (NCs) are obtained. However, until now, optical characterization of these kinds of
multilayer stack has been used to retrieve mainly qualitative information on the dimension, shape,
and geometric distribution of nanoparticles inside the dielectric matrix. An easy-to-handle model that
quantitatively links the optical properties to the main features of the NCs embedded in the matrix is
presented. This model can be applied to multilayer stacks of dielectric layers alternated with metal
NC layers and is shown to be a valid alternative to a recently published model [Nanotechnology 19,
125709 (2008)] that was applied to the case of a three-layer structure (dielectric/metal:dielectric/
dielectric). © 2009 Optical Society of America

OCIS codes: 310.6860, 240.6680, 160.4236.

1. Introduction

Composite films consisting of a ceramic matrix with
embedded metal nanoparticles have received
increased interest due to their peculiar nonlinear
optical properties with response times of a few pico-
seconds, making such material systems suitable for
all-optical switching devices [1,2]. In the field of
optics they have proved useful also as selectively ab-
sorbing optical coatings [3]. Moreover, noble metal-
based nanoclusters (NCs) are promising candidates
as nonlinear optical media for photonic nanodevice
applications [4,5]. The linear and nonlinear optical
properties of these materials are dominated by
collective electron-plasma oscillations, the so-called

localized surface plasmons, induced on metal nano-
particles by the electric field associated with the
incident electromagnetic wave.

This phenomenon produces a resonance called sur-
face plasmon resonance (SPR) in the optical absorp-
tion spectra of nanocomposite materials. The main
features of the resonance peak are related to the ma-
trix refractive index and to the characteristics of the
clusters: size, shape, and spatial distribution [6].

Numerous studies have been dedicated to the fab-
rication of nanocermets by chemical and physical
techniques (see, e.g., [7]). In particular, it has been
shown that nanocomposite materials can be obtained
by depositing alternatively dielectric and metallic
films of opportunely chosen thickness (see, e.g.,
[8–14]). In this way, nanocermets having the struc-
ture shown in the cross section in Fig. 1 can be ob-
tained. It has to be noted that the interparticle
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distance a in the x–y plane can be equal to the inter-
particle distance b along the z direction and, in this
case, the NCs are uniformly distributed inside the
sample volume. The theoretical approach useful to
retrieve from the optical response of the sample in-
formation about the main features of the NCs (shape,
dimension, geometric distribution) is well known
when the NCs are uniformly distributed. In fact,
the Mie theory in the case of low filling factors or,
alternatively, effective medium theories like the
Maxwell–Garnett (MG) theory when interacting ef-
fects among metallic clusters are not negligible,
can be applied. However, the problem becomes much
more complicated when distance a differs with re-
spect to distance b. Therefore, the challenging pro-
blem that we try to solve is to find a suitable
theoretical model to analyze the SPR spectra in
the case of NCs distributed as in Fig. 1 with a ≠ b.
Recently, several authors tried to explain the opti-

cal absorption spectra of metal NCs not uniformly
distributed inside a dielectric matrix on the base
of effective medium theories (see, e.g., [15–17]).
The goal of calculations based on effective medium
theories is to obtain an “effective dielectric function”
εf . A hypothetical homogeneous medium, presenting
εf as a dielectric function, has the same optical re-
sponse as the inhomogeneous medium containing
the metallic clusters. In particular, García et al.
[15] proposed a simple model based on theMG theory

to calculate the effective dielectric function εf to be
assigned to a dielectric matrix with embedded metal-
lic clusters. The model, presented in Refs [15,16], in-
cludes effects due to particle geometry and spatial
homogeneity of the clusters’ distribution but it is af-
fected by some calculation errors and, for this reason,
the expression given for εf does not reduce to the one
expected by the MG theory [18] for spherical nano-
particles uniformly distributed inside a dielectric
matrix.

More recently, Toudert et al. [19] presented a mod-
el that quantitatively links the nanostructure to the
optical response of the film when considering the
case of a three-layer structure (dielectric/metal:
dielectric/dielectric). The central layer, formed by
the metallic NCs embedded inside the dielectric ma-
trix, is considered as an effective medium layer
whose dielectric constant is calculated by fitting
the ellipsometric response [tanðΨÞ and cosðΔÞ spec-
tra] of the multilayer stack. In the fitting procedure,
the thickness of the effective layer is fixed equal to
the average height of the clusters, but, as is shown
throughout this paper, this choice is not really cor-
rect. The dielectric constant of the effective-medium
layer is related to the shape, dimension, and geo-
metric distribution of the metallic NCs, as well as
to the optical parameters of the NCs and the dielec-
tric matrix. Therefore, the fitting of the ellipsometric
spectra of the multilayer stack allows obtaining in-
formation on the main features of the NCs embedded
in the dielectric matrix.

Here an alternative method, based on the cor-
rected calculations of García et al. [15,16], is pre-
sented. It is a particularly easy-to-handle model.
In fact, while the Toudert et al. [19] method requires
the fitting of the ellipsometric spectra of the multi-
layer stack and the use of numerical codes that take
into account the interference effect between the
beams reflected and transmitted at each interface
of the stack, the method presented in this paper is
based on a simple equation linking the dielectric con-
stant of the whole stack, considered as an effective
medium, to the main features of the NCs.

The Toudert et al. method [19] is presented in de-
tail and discussed in Section 2; Section 3 is dedicated
to the description of the alternative method proposed
in this paper. Finally, conclusions are given in
Section 4.

2. Toudert et al. Method

The Toudert et al. method [19] has been applied to
a three-layer system having a dielectric/metal:
dielectric/dielectric structure, with the central nano-
composite layer being an effective medium. There-
fore, the ellipsometric spectra of the three-layer
system have been fit by numerical codes taking into
account the interference of the beams reflected and
transmitted at each interface of the three-layer
stack. Because of the large amount of free para-
meters involved in the fitting procedure, some of
them have been considered fixed. For example, the

Fig. 1. (Color online) Scheme of the spatial arrangement of the
silver NCs (cross section). In particular, the NCs lie on planes per-
pendicular to the direction of propagation of the spectrophot-
ometer beam (z direction). The interparticle distance in the x–y
plane is a, while the interlayer distance in the z direction is b. Ac-
cording to the Toudert et al. method [19], the shaded layers con-
taining the NCs can be considered as effective-medium layers of
thickness d equal to the diameter of the NCs.
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thickness of the effective layer has been fixed equal
to the average height of the clusters and the optical
parameters of the dielectric and metal materials
have been taken from the literature. In this way,
the fitting procedure made it possible to obtain an
effective dielectric function of the central metal:di-
electric layer, which is related by the Yamaguchi the-
ory [20,21] to the shape, dimension, and geometric
distribution of the NCs. Therefore, the fitting of
the ellipsometric spectra made it possible to deter-
mine the main features of the metallic NCs em-
bedded in the dielectric matrix.
A simple test of the Toudert et al. method [19] can

be performed by considering a uniform distribution
of NCs inside a dielectric matrix. Let us suppose,
for example, having Ag spherical NCs of 5nm radius
that are uniformly distributed inside a BaF2 matrix,
such as in Fig. 1 with a ¼ b ¼ 30nm. The optical ab-
sorption spectra of this sample can be readily calcu-
lated by the MG effective medium theory. In fact, the
optical absorbance α of the sample as a function of
wavelength λ is given by

αðλÞ ¼ 4πk
λ ; ð1Þ

where k is the extinction coefficient related to the
effective dielectric function of the material εf by
the formula

k ¼
�jεf j − Reðεf Þ

2

�
1=2

: ð2Þ

According to the MG theory, εf is given by

εf ¼ εm
�
1þ f ðε − εmÞ

εm þ Sðε − εmÞ
�
; ð3Þ

where f is the filling factor given by f ¼ 4πR3=ð3a3Þ,
εm is the dielectric constant of the dielectric matrix,
and parameter S is given by S ¼ L − f ð1=3Þ, where L
is the depolarization factor equal to 1=3 for spherical
particles. Parameter ε in Eq. (3) is the complex dielec-
tric constant of the metal clusters corrected for the
variation of the electron mean free path with cluster
radius R [22]:

εðω;RÞ ¼ εbulkðωÞ þ
ω2
p

ω2 þ iωγ0
−

ω2
p

ω2 þ iωðγ0 þ Avf =RÞ
;

ð4Þ

where ωp ¼ 13:8 × 1015 s−1, vf ¼ 106 m=s, and
γ0 ¼ 2 × 1012 s−1, which are the plasmon frequency,
the Fermi velocity, and the relaxation frequency of
bulk silver, respectively. A is a phenomenological
parameter of the order of 1 [22]. For the theoretical
simulations presented in this work, the dielectric
constant of bulk silver εbulkðωÞ were taken from
[23]; the dielectric constant values εmðωÞ for BaF2
were taken from [24]. The absorbance spectrum cal-

culated by the MG theory is shown in Fig. 2 as a
solid curve.

The system in Fig. 1 can be decomposed into a
stack of 11 layers. The shaded layers containing
the Ag NCs can be considered effective medium
layers, whose optical properties can be obtained by
the Yamaguchi theory [20,21], which is valid for bi-
dimensional distributions of NCs on dielectric sub-
strates. The thickness d of the effective medium
layers can be fixed equal to the diameter of the
NCs (10nm), as Toudert et al. did in [19]. Therefore,
reflectance R and transmittance T of the multilayer
stack can be calculated as interference between the
beams reflected and transmitted at each interface of
the stack. The optical response of the multilayer
stack has to be the same as that of the sample
considered as a single-layer film containing the na-
noparticles. Therefore, optical absorbance α of the
single-layer film can be calculated from R and T
by the formula

αðλÞ ¼ 1
D
½lnðI0 − RÞ − lnðTÞ�; ð5Þ

where D is the physical thickness of the stack and I0
is the incident intensity of the spectrophotometer
beam (I0 ¼ 1). It is worth mentioning that Eq. (5)
is an approximation based on the hypothesis that
the only contribution to the reflected intensity
comes from the first reflection of the beam at the
air–coating interface, i.e., interference effects be-
tween the multiply reflected beams at the air–
coating and substrate–coating interfaces are
neglected. Here, this approximation, generally valid
only in the case of highly optically absorbing thin

Fig. 2. Optical absorption spectra of the system shown in Fig. 1
with a ¼ b ¼ 30nm and NCs’ diameter equal to 10nm. The optical
absorption spectra have been calculated by the MG effective med-
ium theory (solid curve), as well as by the Toudert et al. method
[19] using as thickness of the effective medium layers diameter
d of the NCs (d ¼ 10nm) (dashed curve) and a modified thickness
d0 ¼ 12:2nm (dotted curve).
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films, has been tested for the sample under
consideration.
The α spectrum of the stack obtained in this way is

shown in Fig. 2 as a dashed curve. For a more precise
comparison of the MG spectrum with the one
obtained by the Toudert et al. method [19], the same
approximated formula [Eq. (5)] was used to calculate
the MG absorption spectrum (solid curve). In fact,
the MG spectrum was obtained by considering the
multilayer stack as a single layer of dielectric con-
stant εf given by Eq. (3). Then, the reflectance and
transmittance spectra of the single-layer film were
calculated, and the optical absorption spectra were
obtained by Eq. (5). The validity of the approximated
Eq. (5) has been tested for the particular sample un-
der consideration by comparing the α spectrum ob-
tained by Eqs. (1)–(3) with the one obtained by
Eq. (5). It was found that the two spectra are almost
superimposable.
The absorbance spectra obtained by the Toudert

et al. method [19] does not coincide with the one cal-
culated by the MG formula since, although the SPR
peaks of both spectra have the same spectral posi-
tion, the peak intensity is higher for the MG spec-
trum with respect to the Toudert spectrum. The
discrepancy can be ascribed to the thickness of
the effective layers, which was arbitrarily chosen
to be equal to the diameter of the silver NCs. In fact,
by choosing a slightly higher value for the thickness
of the effective layers, i.e., d0 ¼ 12:2nm, and thus re-
ducing the thickness of the dielectric layers as is

shown in Fig. 3, the absorbance spectra given as a
dotted curve in Fig. 2 is obtained. Therefore, the new-
ly calculated Toudert spectrum can be almost per-
fectly superimposed upon the one obtained by the
MG theory.

Let us now suppose that we vary the interparticle
distance fixing a ¼ b ¼ 40nm and leave the NCs’ ra-
dii equal to 5nm. Then, by using the MG theory, we
obtain the absorbance spectrum shown as a solid
curve in Fig. 4. The spectrum calculated by the
Toudert et al. method fixing d ¼ 10nm is shown as
a dashed curve in Fig. 4 and, as one can note, it does
not coincide with the MG curve. In fact, it is neces-
sary to increase the thickness of the effective layers
to 12nm to obtain agreement between the MG spec-
trum and the Toudert absorbance spectrum. The
newly calculated Toudert spectrum with d0 ¼
12nm is shown in Fig. 4 as a dotted line, and it
almost perfectly coincides with the MG curve.

As one can note, the thickness d, which has to be
imposed to the effective medium layers, does not de-
pend only on the radii of the NCs since, by leaving
fixed radius R of the silver NCs equal to 5nm, we ob-
tained two different values of d0 (12.2 and 12nm) for
the two values of the interparticle distance a (30 and
40nm, respectively). By increasing the radii of the
NCs from 5 to 7nm, we obtained d0 ¼ 17 for the in-
terparticles distance a ¼ b ¼ 40. Therefore, one can
conclude that the thickness d0, which has to be im-
posed to the effective medium layers to obtain the
correct SPR peak intensity, depends both on the in-
terparticle distance as well as on radiusR of the NCs.

In conclusion, if the Toudert et al. method [19] is
used to retrieve from the absorbance spectrum the
main features of the NCs, then it is not correct to im-
pose the thickness d of the effective medium layers
equal to the diameter of the NCs. Then, parameter

Fig. 3. (Color online) To obtain agreement between the optical
absorption spectra calculated by the MG effective medium theory
and the Toudert et al. method [19], it is necessary to consider the
effective medium layers having thickness d0 higher with respect to
the NCs’ diameter d.

Fig. 4. Optical absorption spectra of the system shown in Fig. 1
with a ¼ b ¼ 40nm and NCs’ diameter equal to 10nm. The optical
absorption spectra have been calculated by the MG effective med-
ium theory (solid curve), as well as by the Toudert et al. method
[19] using as thickness of the effective medium layers the diameter
d of the NCs (d ¼ 10nm) (dashed curve) and a modified thickness
d0 ¼ 12nm (dotted curve).
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d remains one of the numerous free parameters of
the fitting procedure and this represents the main
limit of the Toudert et al. method [19].

3. Revised García et al. Method

The method suggested in this work for the optical
characterization of nonuniform NCs distribution, si-
milar to that shown in Fig. 1 with a ≠ b, is based on
the calculations presented by García et al. in [15,16].
However, since some errors were made in those
papers, the correct calculations are presented here.
The local electric field on the ith metallic cluster is

given by the sum of the external applied field Eext
plus the field Ei

surr generated by the surrounding po-
larized metallic clusters at the ith cluster position:

Ei
loc ¼ Eext þ Ei

surr: ð6Þ

The electric field exerted on the ith particle by the
surrounding particles can be expressed as the sum
of two terms Ei

1 and Ei
2:

Ei
surr ¼ Ei

1 þ Ei
2: ð7Þ

The first term, Ei
1, is the contribution to the electric

field acting on the ith particle due to the dipoles in-
side a hypothetical sphere (see Fig. 5) centered at the
ith particle position and containing enough nanopar-
ticles to be representative of the distribution of nano-
particles over the entire sample volume. It is worth
mentioning that this theoretical approach remains
valid in the case of nonuniform distributions of nano-
particles if Ei

1 is independent of radius RL of the
sphere. The second term, Ei

2 in Eq. (7), is the electric
field exerted on the ith particle by the particles
outside the sphere. Therefore, supposing that the ex-
ternal field Eext is oriented along the x axis (see
Fig. 1), and that no preferential orientation of the in-
dividual dipoles is expected in the y or z direction, Ei

1
is given by

Ei
1 ¼ 1

4πεm

X
j

�
3x2ijpjx

r5ij
−

pjx

r3ij

�
x̂; ð8Þ

where pjx is the x component of polarization vector pj
of the jth particle and xij is the x component of posi-
tion vector rij of the jth particle with respect to the ith
particle.

Ei
2 can be calculated as the electric field inside a

uniformly polarized sphere, and it is given by

Ei
2 ¼ P

3εm
; ð9Þ

where P is the polarization density vector given by

P ¼ εm
X
i

niαiEi
loc; ð10Þ

with ni indicating the number per unit volume of
particles having a polarizability αi and subject to
the electric field Ei

loc.
The polarizability αi of the ith metallic nano-

particle can be written as

αi ¼
Viðεi − εmÞ

εm þ Liðεi − εmÞ
; ð11Þ

where parameter Vi is the volume of the ith particle,
while parameter Li is a depolarization factor which is
equal to 1=3 for spherical nanoparticles, while it as-
sumes values close to zero for flat metallic plates
whose normals are perpendicular to the external
electric field and values close to 1=2 for prolate spher-
oids with the long axis perpendicular to the external
electric field.

By defining parameter Ki as

Ki ¼
X
j

h3x2ij
r5ij

−

1

r3ij

ipjx

P
;

and substituting Eq. (7) into Eq. (6), once the terms
Ei
1 and Ei

2 have been explicated, we obtain

Ei
loc ¼ Eext þ

P
3εm

þ 1
4πεm

KiP: ð12Þ

Substituting Ei
loc from Eq. (12) into Eq. (10) we obtain

P ¼ εm
� P

i
niαi

1 −
1
3

P
i
niαi − 1

4π
P
i
niαiKi

�
Eext: ð13Þ

Moreover, the polarization density P for the effective
medium, characterized by dielectric constant εf , is
given by

Fig. 5. Scheme of the imaginary sphere used for the calculation of
the electric field exerted on the ith particle located at the center of
the sphere.
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P ¼ εm
� εf
εm

− 1

�
Eext: ð14Þ

Therefore, substituting Eq. (14) into Eq. (13), we
obtain

εf ¼ εm
�
1þ

P
i
niαi

1 −
1
3

P
i
niαi − 1

4π
P
i
niαiKi

�
: ð15Þ

It is worth mentioning that parameter Ki is
strongly sensitive to the spatial arrangement of
the nanoparticles around the ith particle. In particu-
lar, it assumes zero value when the nanoparticles are
disposed at the vertices of a cubic lattice, e.g., when
they are uniformly distributed inside the sample
volume.
It is worth noting that, substituting Eq. (11) into

Eq. (15), and supposing, for the sake of simplicity,
a uniform distribution of the NCs’ dimensions and,
therefore, a uniform distribution for the dielectric
constant εiðωÞ of the metal NCs [i.e., εiðωÞ ¼ εðωÞ
for all the NCs], and assuming Ki and Li are uni-
formly distributed over the ensemble of nanoparti-
cles (Ki ¼ K and Li ¼ L for all the nanoparticles),
one obtains

εf ¼ εm
�
1þ f ðε − εmÞ

εm þ S0ðε − εmÞ
�
; ð16Þ

where S0 is given by S0 ¼ L − f ð1=3Þ − f ðK=4πÞ.
It is worth mentioning that the theoretical ap-

proach discussed above can be considered still valid
in the case of nanoparticles lying on parallel planes,
despite the strong nonuniformity of this geometric
distribution. In fact, by defining the parameter σi
as the summation

σi ¼
X
j

½ð3x2ijÞ=ðr5ijÞ − 1=ðr3ijÞ�;

and assuming, for the sake of simplicity, all the NCs
have the same component pjx ¼ px and the same vo-
lume V, and supposing each of the nanoparticles is
surrounded by approximately the same geometric
distribution of NCs (i.e., σi ¼ σ for each nanoparticle),
the electric field due to the nanoparticles inside the
Lorentz sphere E1

i can be written as

E1
i ¼ σpx

4πεm
: ð17Þ

Figure 6 shows the dependence of the summation σ
on the Lorentz sphere radius RL in the case of nano-
particles lying on layers spaced 50nm apart. The in-
terparticle distance along the x as well as the y
directions has been taken equal to 10nm. As one
can note, summation σ remains close to 3:6 ×
10−3 nm−3 independent of radius RL. Therefore, since
E1

i given by Eq. (17) is almost independent of the RL
of the Lorentz sphere, the theoretical approach
presented above remains valid in the case of NCs
distributed on parallel layers.

It is worth mentioning that, in the case of NCs uni-
formly distributed inside the dielectric matrix
(K ¼ 0), Eq. (16) reduces to the MG formula
[Eq. (3)] since S ¼ S0.

It is important to note from Eq. (16) that the effec-
tive dielectric function εf depends on εðωÞ and εmðωÞ,
as well as on parameters f and S. Therefore, one can
infer that it is not possible to univocally determine
parameters L andK from the fitting of the αðλÞ curve.
In fact, the only parameters that can be univocally
determined are S and f , besides the NCs’ radii R,
which appears in the expression for the metallic
NCs’ dielectric constant ε [see Eq. (4)]. This means
that the fitting procedure of the SPR curve, through
the theoretical model hereby presented, allows deter-
mining the K parameter only if the depolarization
factor L is known. In other words, the fitting proce-
dure of the SPR curve makes it possible to obtain in-
formation on the spatial arrangement of the metallic
NCs only if their shape is determined through other
characterization techniques. It is worth mentioning
that even using the Toudert et al. method it is not
possible to univocally determine the shape and the
geometric distribution of the NCs. In fact, according
to the Yamaguchi theory [20,21], the effective dielec-
tric constant of the layers containing the NCs is
given by

εf ¼ εm
�
1þ f ðε − εmÞ

εm þ Fðε − εmÞ
�
; ð18Þ

where F is given by F ¼ L −
K
4π f with the parameter

K calculated now on the plane. Therefore depolariza-
tion factor L and parameter K cannot be univocally
determined.

Fig. 6. σ value as a function of the Lorentz sphere radius RL for
NCs lying on layers spaced 50nm apart perpendicular to the beam
direction. The interparticle distance along the x as well as the y
directions has been taken equal to 10nm.
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A good check of the revised Garcia et al. [15,16]
model can be obtained calculating the absorption
spectra in the case of geometric distributions with a ≠

b and comparing it with the one obtained by the
Toudert et al. method [19] using the modified thick-
ness d0 as the thickness of the effective medium
layers . Therefore, let us suppose having parallel
layers of Ag NCs of 5nm radius embedded inside a
BaF2 matrix with interparticle distance a in the
x–y plane (see Fig. 1) equal to 40nm and interlayer
distance b equal to 60nm. In this case, the K para-
meter is equal to 1.72. Therefore, substituting the K,
L (equal to 1=3 for spherical particles), and f values
inside Eq. (16), we directly obtain the effective dielec-
tric function εf of the whole stack. It is worth men-
tioning that the definition of the f parameter is
problematic in the case of nonuniform distributions
of NCs. In fact, it could be calculated as the total
volume of the metallic NCs over the volume of the
sample. However, since the absorption spectra is sen-
sitive to the filling factor locally met by the spectro-
photometer beam when it crosses the layers of NCs,
we calculated the filling factor as f ¼ 4πR3=ð3a3Þ. In
this way, f represents a “local filling factor” met by
the spectrophotometer beam along its path. The op-
tical absorption spectrum of the whole stack can be
calculated directly from Eqs. (1) and (2), using as εf
the effective dielectric function relative to the whole
stack calculated by the García et al. method
[Eq. (16)]. However, for a comparison with the
Toudert et al. method [19], we used the same method
described in Section 2: we calculated the reflectance
and transmittance spectra of the whole stack consid-
ered as a single layer of dielectric function εf and
then we used the same approximated formula used
by the Toudert et al.method [19] [Eq. (5)] to calculate
the absorbance spectrum. The optical absorption

curve obtained in this way is shown as a
solid curve in Fig. 7.

Let us now compare this spectrum with the one ob-
tained by the Toudert et al.method [19]. Let us use as
the thickness of the effective medium layers the va-
lue d0 ¼ 12nm obtained in Section 2 for a ¼ 40nm
andR ¼ 5nm (we are supposing d0 to be independent
of the interlayer distance b). The αðλÞ obtained in this
way is shown as a dashed curve in Fig. 7 and, as one
can note, it is perfectly superimposed to the one
obtained by the García et al. method [15,16].

It is worth mentioning that the Garcia et al. meth-
od [15,16] represents an easier to handle method
with respect to the Toudert et al.method [19]. In fact,
the latter method requires the use of numerical codes
that take into account the interference effect be-
tween the beams reflected and transmitted at each
interface of the stack to retrieve from the optical
spectra [e.g., reflectance and transmittance, or
tanðΨÞ and cosðΔÞ] the dielectric function of the ef-
fective layers. In contrast, the method presented
here can be easily applied to calculate the optical ab-
sorption spectrum from reflectance and transmit-
tance through Eq. (5). Then, using Eqs. (1), (2),
and (16), it is possible to retrieve the main features
of the NCs. On the other hand, for a more precise cal-
culation, the numerical codes considering interfer-
ence effects can be used to obtain the effective
dielectric constant of the whole stack considered as
a single effective layer, and then Eq. (16) can be used
to retrieve the NCs’ features.

4. Conclusions

The aim of this work is to determine the theoretical
model that has to be applied in the case of multilayer
stacks formed by layers of metallic NCs sandwiched
between dielectric layers, such as the one shown in
Fig. 1 with a ≠ b, to retrieve from the optical absorp-
tion spectra the main features of the metallic NCs
(shape, dimension, and geometric distribution). A
possible approach to the problem was recently pre-
sented by Toudert et al. [19] who considered the stack
as a multilayer coating, composed of dielectric layers
alternated with effective medium layers. It has been
shown that the Toudert et al. method [19] is able to
reproduce the absorbance spectrum given by the MG
effective medium theory in the case of uniform distri-
butions of metallic NCs embedded inside a dielectric
matrix, provided that the thickness of the effective
medium layers d0 is opportunely chosen. It has been
shown that the thickness d0 depends on both the ra-
dius R of the NCs as well as on the interparticle dis-
tance a but, since a correlation that links d0 to a and
R has not been found, d0 remains one of the numer-
ous free parameters of the fitting procedure.

An alternative method, based on the calculations
presented by García et al. in [15], has been proposed
here and has been shown effective to obtain the
optical absorption spectra in agreement with those
obtained by the Toudert et al. method [19], provided
that the corrected thickness d0 is used for the

Fig. 7. Optical absorption spectra of the system shown in Fig. 1
with a ¼ 40nm and b ¼ 60nm, calculated by the García method
[15,16] (solid curve) and by the Toudert et al. method [19] using
the modified thickness d0 ¼ 12nm (dashed curve) for the effective
medium layers. The NCs’ diameter is 10nm.
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effective medium layers. It has been pointed out that
this method, as well as the Toudert et al. method,
does not allow determining separately the depolari-
zation factor L and the K parameter, related to the
shape and the geometric distribution of the NCs, re-
spectively. Therefore, due to the large amount of
parameters involved in the theory, some of them
have to be fixed equal to those determined by other
microstructural characterization techniques. In this
way, it is possible to retrieve from the optical absorp-
tion spectra information about the spatial arrange-
ment (or shape) and dimension of the NCs, as well
as the effective filling factor locally met by the spec-
trophotometer beam along its path.

This work has been done within the framework of
the PONAMAT project “Development of polymer na-
nocomposite materials for optical, electronic and sen-
sor applications,” CIP PS_016, financially supported
by Regione Puglia, Italy.
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