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Dimensional crossover in spin-orbit-coupled semiconductor nanowires with induced
superconducting pairing
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We show that the topological Majorana modes in nanowires much longer than the superconducting coherence
length are adiabatically connected with discrete zero-energy states generically occurring in short nanowires. We
demonstrate that these zero-energy crossings can be tuned by an external magnetic field and are protected by
the particle-hole symmetry. We study the evolution of the low-energy spectrum and the splitting oscillations as
a function of magnetic field, wire length, and chemical potential, manifestly establishing that the low-energy
physics of short wires is related to that occurring in long wires. This physics, which represents a hallmark of
spinless p-wave superconductivity, can be observed in tunneling conductance measurements.
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I. INTRODUCTION

The theoretical predictions1–11 that the proximity effect
induced by ordinary s-wave superconductors (SCs), along
with spin-orbit coupling and Zeeman spin splitting, could give
rise to topological superconductivity have led to an intensive
experimental search for Majorana fermions. Following specific
theoretical predictions,7,8 a series of recent experimental
papers12–15 have presented evidence for the existence of Majo-
rana modes in quasi-one-dimensional (quasi-1D) semiconduc-
tor (SM) nanowires. This excitement is further enhanced by the
fact that these Majorana end modes can, in principle, be used to
carry out fault-tolerant topological quantum computation,16,17

as envisioned originally by Kitaev18 more than 10 years ago.
Any observation of the Majorana mode in solid-state mate-

rials is a rather important experimental discovery, therefore it
is legitimate to ask critically whether the recent experimental
findings are truly consistent with the theoretical predictions for
the elusive Majorana particle. This is particularly important in
view of the fact that the current experimental observations
(except Ref. 13) are based entirely on the existence of zero-
bias conductance peaks (ZBCPs) in the differential tunneling
measurements, which represents a necessary condition9,19–22

for the existence of the Majorana mode. The sufficient con-
dition necessitates an interference experiment establishing the
non-Abelian nature of these modes, which has not yet been per-
formed. Since ZBCPs arise quite commonly in both SCs and
SMs, it is of critical importance to carefully analyze the various
experimental data to see whether the ZBCP is indeed consistent
with the existence of the Majorana, or is arising from other,
presumably more mundane, physical mechanisms.23–26 In ad-
dition, in short wires with lengths comparable to the SC coher-
ence length, it is commonly believed that the two end Majorana
modes should hybridize and move away from zero bias.27,28

The important practical question of fundamental significance
addressed here concerns the issue of the shortest nanowire
length consistent with the manifestation of a zero-bias con-
ductance peak indicating the presence of zero-energy modes in
the underlying energy spectrum. This issue has become urgent
because the original observation of the ZBCP in long (>2 μm)
InSb nanowires12 has recently been qualitatively reproduced in

short (<0.5 μm) InAs nanowires,15 thus raising the important
question of whether the ZBCPs in long and short wires are
manifestations of the same qualitative physics or not.

The goal of the current work is to critically investigate the
wire length dependence of the ZBCP in SC nanowires and
to clearly identify the nature of the ZBCP in short wires and
its possible relationship to the Majorana zero-energy modes
emerging in long wires. We establish that, for appropriate
values of the magnetic field, the lowest energy mode of
the SC system is characterized by an adiabatic continuity
as a function of wire length and that ZBCPs generated by
this near-zero-energy mode may exist even for wire lengths
comparable to the SC coherence length. Therefore, although
in short wires the whole notion of a topological phase with
nonlocal zero-energy Majorana modes becomes meaningless
(i.e., anyons are strongly overlapping and cannot be manipu-
lated independently), the mode characterized by zero-energy
crossings associated with the ZBCPs corresponds to a pair of
overlapping Majorana states and can be viewed as remnant
Majorana physics carried over from the long-wire topological
phase. We thus believe that the ZBCPs observed in Refs. 12
and 15 for long and short wires, respectively, are adiabatically
connected and, in some sense, are both manifestations of
the predicted Majorana quasiparticles in topological quasi-
1D superconductors.7,8 By solving numerically an effective
tight-binding model for multiband SM nanowires with realistic
parameters, we calculate the energy spectrum and the density
of states as functions of the wire length and externally
tunable parameters—magnetic field and chemical potential.
We show that robust zero-energy crossings associated with the
remnant Majorana mode generically occur in short nanowires
at discrete values of the magnetic field B. When isolated in the
parameter space, these zero-energy crossings are protected by
the particle-hole symmetry and represent a hallmark of spinless
p-wave superconductivity. With increasing wire length, the
period of the zero-energy crossings and the amplitude of the
energy splitting oscillations as a function of Zeeman field
or chemical potential decrease. We demonstrate that these
rather generic zero-energy crossings in short wires generate
ZBCPs that may look similar to those produced by topological
Majorana zero-energy modes due to the limited experimental

094518-11098-0121/2013/87(9)/094518(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.094518


TUDOR D. STANESCU, ROMAN M. LUTCHYN, AND S. DAS SARMA PHYSICAL REVIEW B 87, 094518 (2013)

resolution. The short wire low-energy remnant Majorana mode
becomes the true topological Majorana bound state in the long
wire limit.

II. MODEL

We consider a SM nanowire with rectangular cross section
Ly × Lz = 50 nm × 60 nm and different wire length values
Lx . In the limit of an infinite wire, Lx → ∞, the Hamiltonian
describing the nanowire reads

H SM
nm (k) = [εn(k) + αRkσy + �σx]δnm − iαqnmσx, (1)

where k ≡ kx is the wave number, σi are Pauli matrices
associated with the spin degree of freedom, and αR = αa

is the strength of the Rashba spin-orbit coupling, with
a being the lattice constant. In Eq. (2), n = (ny,nz)
and m = (my,mz) label different confinement-induced sub-
bands described by the transverse wave functions φn(y) ∝
sin(nyπy/Ly) sin(nzπz/Lz), εn(k) describes the SM spectrum
without SO coupling, and � = g∗μBB/2 is the external
Zeeman field along the x direction. The term containing
qnm represents the interband Rashba coupling29 and is given
explicitly in the Appendix. The numerical values of the pa-
rameters correspond to InAs—effective mass meff = 0.026m0

and Rashba coefficient αR = 0.2 eV Å. This defines the spin-
orbit length scale lso ≡ h̄2/meffα ≈ 150 nm below which the
spin-orbit coupling is effectively quenched. The low-energy
spectrum of the wire is shown in Fig. 1. For a finite nanowire,
the spectrum consists of discrete energy levels, as shown in
Fig. 1 for a short wire of length Lx = 400 nm.

Next, we consider the SM nanowire proximity-coupled to
an s-wave superconductor. The superconductor can be de-
scribed by the BCS density of states ν(E) = νF 
(|E| − |�0|)

E√
E2−�2

0

where νF and �0 are the normal density of states

at the Fermi level and the SC energy gap, respectively. By
integrating out the SC degrees of freedom and linearizing the
frequency dependence, one arrives at an effective low-energy
description of the system valid at energies E 	 �0 (Ref. 29)
(see the Appendix). The corresponding BdG Hamiltonian for
a quasi-1D nanowire reads

Hn,m(kx) = Z[εn(kx) + αRkxσy + �σx]δnmτz

+ iZαqnmσx + �indσyτy, (2)

where τi are Pauli matrices associated with the particle-hole
degree of freedom and we have used the basis (u↑,u↓,v↑,v↓)

kx (nm-1) 

E(
k x

)  
(m

eV
)

FIG. 1. (Color online) Low-energy semiconductor spectrum in
the nonsuperconducting phase [orange (light gray)] corresponding
to the effective parameters of Eq. (2). The black dots represent the
discrete energy values for a short wire with Lx ≈ 400 nm and periodic
boundary conditions.
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FIG. 2. (Color online) Low-energy BdG spectrum as a function
of the chemical potential for finite wires of different lengths. The
blue (dark gray) lines correspond to a vanishing Zeeman field, while
the orange (light gray) line represents the lowest-energy state for
� = 0.18 meV.

for the Nambu spinors. In Eq. (2), the proximity-induced renor-
malization factor is Z = (1 + γ /�0)−1, where γ = 75 μeV
is the effective SM-SC coupling and the induced SC gap is
�ind = γ�0/(γ + �0) = 50 μeV. For these parameters, the
level spacing between different nx states becomes larger than
the SC gap �0 = 150 μeV in wires with Lx � 0.5 μm. In this
regime, changing the chemical potential leads to significant
variations of the energy corresponding to the lowest BdG state
and of the number of quasiparticle states within the SC gap
�0. This behavior is illustrated in Fig. 2. In the absence of a
Zeeman field [blue (dark gray) lines], the minima of the BdG
spectrum roughly correspond to the quantized energy levels
Enxnynz

= μ, with (ny,nz) = (1,1), i.e., the lowest energy band
in Fig. 1, and different nx values. Similar behavior can be
observed when the chemical potential is in the vicinity of
other band minima, e.g., μ = 18 meV +�μ for the band
with (ny,nz) = (2,1), plus extra contributions from the lower
energy bands. In the presence of a Zeeman field, the energy
of the lowest-energy state decreases and eventually vanishes
at a certain μ-dependent value of �. Note that, as a result of
spin-orbit coupling, states with low nx depend strongly on �,
while high-nx states are weakly �-dependent.

III. NUMERICAL RESULTS AND
PHYSICAL INTERPRETATION

In the remainder of the paper, we focus on the
experimentally relevant parameter regime Lx ∼ ξ > lso

and contrast the properties of the system in this limit with
the ones for a long nanowire (L 
 ξ ). The dependence of
the quasiparticle spectrum on the applied magnetic field for
several values of Lx is shown in Fig. 3. The lowest-energy
mode (red lines) is characterized by discrete zero-energy
crossings that are robust against disorder, which we checked
explicitly. In spinless superconductors, such isolated crossings
are quite robust against perturbations due to the particle-hole
symmetry. Indeed, consider kp perturbation theory near a
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FIG. 3. (Color online) Low-energy BdG spectrum as a function
of the Zeeman field for finite wires of different lengths. In the limit
Lx → ∞, a Majorana zero mode appears above a critical field �c ≈
0.1 meV. In finite wires, the mode acquires a finite energy due to the
overlap of the states localized at the ends of the wire. In very short
wires (e.g., Lx = 0.2 μm), the lowest-energy state depends almost
linearly on the Zeeman field. States characterized by different values
of nx are coupled by the Rashba interaction and, consequently, the
dependence of their energy on � is nonlinear. The chemical potential
is μ = 18 meV (bottom of the third band in Fig. 1).

crossing point. The two zero-energy solutions �0 and �1 are
related by particle-hole symmetry, �1 = τx�

∗
0 . To open a gap

at the crossing point, the off-diagonal matrix element has to be
nonzero, 〈�0|V |�1〉 �= 0, where V is a generic perturbation
that satisfies particle-hole symmetry τxV τx = −V T .
However, using particle-hole symmetry, we have
V01 = 〈�0|V |�1〉 = ∫

dx �∗
0 V �1 = − ∫

dx �∗
0 τxV

T �∗
0 =

− ∫
dx �1V

T �∗
0 = 0. Thus, particle-hole symmetry ensures

the robustness of isolated zero-energy crossings. Another way
of understanding the robustness of an isolated zero-energy
crossing invokes fermion parity—one can show that the
two zero-energy states �0 and �1 actually correspond to
a different fermion parity.3 However, the position of the
zero-energy crossing point is nonuniversal and changes
with the perturbation, since the diagonal matrix elements
are nonzero, 〈�0|V |�0〉 = −〈�1|V |�1〉. To get rid of the
zero-energy crossings, one has to bring another pair of
zero-energy states to the same point in the parameter space.
Then, four states would hybridize with each other since two
of them will now have the same fermion parity and eventually
result in the avoided level crossings. This is illustrated in Fig. 3
for Lx ≈ 0.4 μm. In this case, small variations of the chemical
potential will result in either two close zero-energy crossings
(�μ < 0) or an avoided crossing (�μ > 0). However, these
avoided level crossings would still be near-zero-energy states
and may produce ZBCPs in experimental systems, which
invariably have finite energy resolutions.

The emergence of zero-energy crossings in short wires
Lx � ξ > lso is intriguing, and one may ask the question
whether it might be possible to use these zero-energy states
for topological quantum computation (TQC). Indeed, one of
the necessary ingredients for TQC is ground-state degeneracy,
which can be achieved hypothetically by fine-tuning. However,
another important ingredient is the ability to manipulate the
Majorana quasiparticles independently. Consider, for example,
Kitaev’s lattice model18 at the special point when hopping t

is equal to gap |�|. At this point, two zero-energy Majorana
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FIG. 4. (Color online) Profiles of the lowest-energy states in
nanowires of different lengths. Top panel: Majorana bound state
localized near the end of a long wire (Lx 
 ξ ). In the other panels,
the red (dark gray) lines correspond to � = 0.05 meV and the yellow
(light gray) lines are for � = 0.18 meV (see Fig. 3). Increasing the
Zeeman field mixes states with different values of nx and generates
modes that become localized near the end of the wire. This mechanism
is absent in very short wires [bottom panel, (Lx 	 ξ )] due to the wide
energy separation between the quantized levels (see Fig. 2).

modes are localized at the opposite ends of the chain. Thus,
their manipulation, even in the limit of a short wire, would
lead to non-Abelian braiding statistics. The situation at hand
is different, however, because the quasi-Majorana modes are
strongly overlapping (see Fig. 4), i.e., the anyons are strongly
hybridized and their independent manipulation is not possible.

The evolution of the low-energy spectrum with the wire
length clearly illustrates the adiabatic continuity of the near-
zero-energy mode, as shown in Fig. 5. Consider first the
long-wire limit Lx 
 ξ . Above the critical field �c > 0.1 meV,
the system is driven into a topological phase with Majorana
zero-energy end states. In a finite system, the splitting energy
δE between Majorana modes has an oscillatory prefactor,
in addition to an exponentially decaying envelope, δE ∝

Lx ( m)

E 0
(

eV
) 

E 0
(

eV
) meV 

meV 

FIG. 5. (Color online) Evolution of the lowest-energy mode with
the size of the wire for different values of the Zeeman splitting
� = 0.2 and 0.4 meV and chemical potential μ = 0. The shaded
region corresponds to excited quasiparticle states. The size evolution
of the low-energy spectrum corresponding to μ = 13 meV is shown
in the Appendix.
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FIG. 6. (Color online) Nearly zero-energy peak in the density of
states (DOS) of a short wire with Lx = 0.4 μm as function of the
Zeeman field. The chemical potential is μ = 18 meV. A decrease of
the SC gap �0 with the increasing Zeeman field (by up to 60%) and
a finite energy resolution of 10 μeV are included.

sin(kF Lx) exp(−Lx/ξ ).27 Changing the system size or the
magnetic field, which in turn changes kF and ξ , results in
oscillations of the energy splitting, as shown in Figs. 5 and
3. With deceasing Lx , the number of oscillations within a
given � interval decreases while their amplitude increases,
so that the gap separating the lowest-energy mode from the
excited states collapses, or δE exceeds �0. At this point,
Lx ≡ Lc, all remnant features of localized Majorana modes
completely disappear. For the nanowires longer than Lc there
is adiabatic continuity of the spectrum indicating that there is
no topological quantum phase transition between the Lx 
 ξ

and Lx = Lc regimes.
Our results presented in Figs. 2–5 clearly establish that

robust near-zero-energy modes are generic in quasi-1D
nanowires in the presence of spin-orbit coupling, magnetic
field, and SC pairing, in a wide range, Lx � ξ > lso. One
of the possible experimental implications of these findings
is illustrated in Fig. 6. In the presence of a finite energy
resolution, the near-zero-energy mode is converted into a
continuous ZBCP as a function of the magnetic field, as
observed experimentally. This behavior is reflected by the
dependence of the calculated density of states (DOS) on the
applied magnetic field (see Fig. 6). Note that the finite width of
the zero energy peak in the DOS is determined by temperature
and coupling to the metallic leads. In short wires, where only
a few states have energies inside the SC gap, this may be the
dominant contribution. The apparent ZBCP will eventually
split off and may come back again at still higher fields.

IV. CONCLUSIONS

We conclude by emphasizing that our findings have
important implications for the current experiments probing
the existence of Majorana modes in hybrid semiconductor
structures. Except for very short wires characterized by
quantized level spacings much larger than �0 and Eso, the

system supports an adiabatically continuous low-energy mode
that smoothly crosses over, as the wire length increases,
from a quasi-Majorana regime characterized by discrete zero
crossings and energy splitting oscillations to a zero-energy
topological Majorana mode. This mode is generically as-
sociated with zero-bias conductance peaks that, in a finite
resolution measurement, extend over a finite magnetic field
range. This indicates that the recent observations in long InSb
nanowires12 and in short InAs nanowires15 are adiabatically
connected and are likely to be the expected signature for the
predicted spinless p-wave superconductivity characterized by
the existence of the Majorana quasiparticles in long nanowires.
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APPENDIX: LOW-ENERGY EFFECTIVE MODEL

The realization of zero-energy Majorana bound states in
solid-state systems requires three key ingredients: (i) strong
spin-orbit coupling, (ii) Zeeman splitting, and (iii) super-
conductivity. In semiconductor wire–superconductor hybrid
structures, these ingredients are provided by the spin-orbit
interacting semiconductor, the external magnetic field, and
the proximity-induced superconductivity, respectively. The
Hamiltonian that describes the quantum properties of the
system has the generic form

Htot = HSM + HZeeman + HSC + HSM-SC, (A1)

where different terms correspond to the semiconductor wire,
the applied Zeeman field, the s-wave superconductor, and
the semiconductor-superconductor coupling, respectively. The
semiconductor term, which includes the spin-orbit coupling,
is represented by the tight-binding Hamiltonian

HSM = H0 + HSOI =
∑
i, j ,σ

ti jc
†
iσ c jσ − μ

∑
i,σ

c
†
iσ ciσ

+ iα

2

∑
i,δ

[
c
†
i+δx

σyci − c
†
i+δy

σxci + H.c.
]
, (A2)

where H0, which includes the first two terms, describes
nearest-neighbor hopping on a simple cubic lattice with lattice
constant a with ti i+δ = −t0, where δ are the nearest-neighbor
position vectors. The hopping parameter can be expressed
in terms of the electron effective mass in InAs as t0 =
h̄2/(2meffa

2), with meff = 0.026m0, where m0 is the bare
electron mass. In Eq. (A2), the last term represents the Rashba
spin-orbit interaction (SOI), c

†
i is a spinor c

†
i = (c†i↑,c

†
i↓) with

c
†
iσ being the electron creation operators with spin σ , μ is

the chemical potential, α is the Rashba coupling constant,
and σ = (σx,σy,σz) are Pauli matrices. For a nanowire with a
rectangular cross section and dimensions Lx 
 Ly ∼ Lz, the
quantum problem corresponding to H0 can be solved analyti-
cally and we obtain the eigenstates ψnσ (i) = ∏3

λ=1 φnλ
(iλ)χσ ,

where n = (nx,ny,nz) with 1 � nλ � Nλ, χσ is an eigenstate
of the σz spin operator, and

φnλ
(iλ) =

√
2

Nλ + 1
sin

πnλiλ

Nλ + 1
, (A3)

094518-4



DIMENSIONAL CROSSOVER IN SPIN-ORBIT-COUPLED . . . PHYSICAL REVIEW B 87, 094518 (2013)

with λ = x,y,z and Lλ = aNλ, where a is the lattice constant.
Note that, for an infinite wire, the wave vector is a good quan-
tum number, nx → kx , and the corresponding eigenfunction
becomes φkx

(x) = √
2/Lxe

ikxx . The eigenvalues correspond-
ing to ψnσ are

εn = −2t0

(
cos

πnx

Nx + 1
+ cos

πny

Ny + 1
+ cos

πnz

Nz+1
− 3

)
−μ0, (A4)

where n = (nx,ny,nz) and the chemical potential μ0 is
measured from the bottom of the first band. For an infinite wire,
the energy band corresponding to the confinement-induced
band n = (ny,nz) is given by

εn(kx) = h̄2k2
x

2meff
− 2t0

(
cos

πny

Ny +1
+ cos

πnz

Nz+1
− 2

)
− μ0.

(A5)

Since the number of degrees of freedom in a finite wire is
large (of the order 107–109), yet Majorana physics is basically
controlled by a reduced number of low-energy degrees of
freedom (of the order 103–104), we project the problem into
the low-energy subspace spanned by a certain number of
low-energy eigenstates of H0. We assume that only a few
bands are occupied, so the low-energy subspace is defined
by the eigenstates satisfying the condition εn < εmax, where
the cutoff energy εmax is of the order 100 meV. Using this
low-energy basis, the matrix elements of the SOI Hamiltonian
can be written explicitly as

〈ψnσ |HSOI|ψn′σ ′ 〉

= αδnzn′
z

{
1 − (−1)nx+n′

x

Nx + 1
(iσ̂y)σσ ′

×
sin πnx

Nx+1 sin πn′
x

Nx+1

cos πnx

Nx+1 − cos πn′
x

Nx+1

δnyn′
y
− [x ⇔ y]

}
, (A6)

where the second term in the curly brackets is obtained from
the first term by exchanging the x and y indices. Note that
the SOI Hamiltonian has the structure HSOI = Hx

SOI + H
y

SOI,
where the first term represents the intraband Rashba coupling
while H

y

SOI couples bands with different ny indices. For an
infinite wire, the first term in (A6), representing the intraband
contribution, becomes〈

Hx
SOI

〉
nn′ = αRkxδnn′σy, (A7)

where αR = αa. In the numerical calculations, we use αR =
0.2 eV Å. The interband spin-orbit coupling corresponding to
the second term in (A6) has the form〈

H
y

SOI

〉
nn′ = −iαqnn′σx, (A8)

with

qnn′ = 1 − (−1)ny+n′
y

Ny + 1

sin πny

Ny+1 sin
πn′

y

Ny+1

cos πny

Ny+1 − cos
πn′

y

Ny+1

δnzn′
z
. (A9)

The second ingredient for realizing Majorana fermions
in semiconductor nanowires is represented by the Zeeman
field. We consider that the Zeeman splitting � is generated
by applying a magnetic field oriented along the wire (i.e.,

along the x axis), � = g∗μBBx/2. The corresponding matrix
element in the low-energy basis is

〈ψnσ |HZeeman|ψn′σ ′ 〉 = �δnn′δσ̄σ ′, (A10)

where σ̄ = −σ . Adding together these contributions, the
effective Hamiltonian describing the low-energy physics of
the semiconductor nanowire in the presence of a Zeeman field
becomes

H SM
nn′ (kx) = [εn(kx) + αRkxσy + �σx]δnn′ − iαqnn′σx,

(A11)

where εn(kx) is given by Eq. (A5) and qnn′ by Eq. (A9). For
a finite wire, the bare energy is given by the expression in
Eq. (A4), while the spin-orbit contribution corresponds to
Eq. (A6).

The third key ingredient is the proximity-induced
superconductivity (SC). As a result of the proximity to
the s-wave superconductor, a pair potential � is induced in
the nanowire and the energy scale for the quantum states
in the semiconductor is renormalized. To account for this
effect, we integrate out the SC degrees of freedom and
incorporate them as a surface self-energy term of the form29

�(ω) = −γ

[
ω + �0σyτy√

�2
0 − ω2

+ ζ τz

]
, (A12)

where γ = 0.3 meV is the effective SM-SC coupling, τx and
τz are Pauli matrices in the Nambu space, �0 = 1.5 meV is the
pair potential of the bulk SC, and ζ is a proximity-induced shift
of the chemical potential. In the present calculations, we take
ζ = 0. Within the static approximation

√
�2

0 − ω2 → �0, the
self-energy becomes �(ω) ≈ −γω/�0 − γ σyτy and the low-
energy physics of the SM nanowire with proximity-induced
SC can be described by an effective Bogoliubov–de Gennes
Hamiltonian. This approximation is valid, strictly speaking,
at energies much lower than �0, but it represents a very good
approximation even for E ∼ �0/2. Explicitly, the matrix
elements of the effective BdG Hamiltonian can be written as

HBdG(n,n′) = Z
[
εnδnn′ + �σxδnn′ + 〈

Hx
SOI

〉
nn′

]
τz

+Z
〈
H

y

SOI

〉
nn′ + �σyτy, (A13)

where n = (nx,ny,nz) are quantum numbers for the nanowire
states in the absence of spin-orbit coupling, εn are the
corresponding energies, � is the Zeeman splitting, and
〈Hx

SOI〉nn′ and 〈Hy

SOI〉nn′ are matrix elements for the intraband
and interband Rashba spin-orbit coupling, respectively. Note
that the energy scale for the SM nanowire is renormalized
by a factor Z = (1 + γ /�0)−1 due to the SC proximity
effect. This renormalization is determined by the term in
the self-energy (A12) that is proportional to ω (in the static
approximation). The pairing term in Eq. (A13) is derived from
the corresponding contribution to the self-energy (A12) and
is proportional to the induced pair potential � = γ�0/(γ +
�0) = 250 μeV. For an infinite wire, Eq. (A13) becomes

Hn,n′(kx) = Z[εn(kx) + αRkxσy + �σx]δnn′τz

+ iZαqnn′σx + �σyτy, (A14)
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FIG. 7. (Color online) Evolution of the quasi-Majorana mode
with the size of the wire for a Zeeman splitting � = 0.4 meV
and chemical potential μ = 13 meV corresponding to two partially
occupied bands. The rapidly oscillating blue line represents regular
Andreev bound states associated with the low-energy occupied band.
In short wires, the energy of these Andreev bound states may vanish
as a function of the Zeeman field, but they are not adiabatically
connected to the topological Majorana bound states that emerge in
long wires.

where n = (ny,nz) labels the confinement-induced bands. The
effective BdG Hamiltonian described by Eq. (A13) (for a finite
system) or Eq. (A14) (for an infinite wire) is diagonalized
numerically.

Quasi-Majorana versus regular Andreev bound states. We
emphasize that the adiabatic connection between the quasi-
Majorana mode in short wires and the topological Majorana
mode is, in general, nontrivial. As illustrated in Fig. 7, in
short wires, in addition to the quasi-Majorana mode, there
are other low-energy Andreev bound states that may have
vanishing energy at specific values of Lx and Zeeman splitting.
However, in long wires these modes will be characterized by a
finite energy gap, while the energy of the Majorana mode will
vanish. We note that these regular Andreev bound states are
associated with the lower-energy occupied bands, in contrast
with the Majorana (or quasi-Majorana) mode, which is always
associated with the top occupied band. Experimentally, the
contributions arising from these types of low-energy states
could be disentangled by varying the effective length of
the wire (e.g., using a gate potential): the energy of the
quasi-Majorana mode will show a weak dependence on the
effective wire length, in sharp contrast with these regular
Andreev bound states associated with the low-energy bands,
which have energies that depend dramatically on the length of
the wire.
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