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a b s t r a c t

This paper presents a multi-scale finite element approach for lithium batteries to study electrochemical–
mechanical interaction phenomena at macro- and micro-scales. The battery model consists of a lithium
foil anode, a separator, and a porous cathode that includes solid active materials and a liquid electrolyte.
We develop a multi-scale approach to analyze the surface kinetics and electrochemical–mechanical phe-
nomena within a single spherical particle of the active material. Homogenization techniques relate
parameters in the micro-scale particle model to those in the macro-scale model describing the lithium
ion transport, electric potentials and mechanical response based on porous electrode theory.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Today, lithium batteries have the highest energy storage density
of any secondary (rechargeable) battery technology [1]. However,
their current use is limited to relatively low power applications
such as cell phones and other small, portable electronics. Electrical
systems requiring high voltages and/or currents such as battery
packs in hybrid-electric vehicles still use traditional, heavy, lead-
acid battery technology due to lower cost, longer lifetimes, and
increased safety as failure in lithium batteries can be dramatic such
as the laptop battery fires that occurred recently. Failure can be
due to thermal runaway, internal shorting, and mechanical degra-
dation of the electrodes. Lithium rechargeable batteries suffer in
particular from a limited lifetime in comparison to other recharge-
able chemistries, being limited to 100–150 charge–discharge
cycles versus the 300 cycles achieved by other technologies [1].
This shortened lifecycle is due to deposits formed on the surface
of the electrode during cycling [1], and possibly due to mechanical
degradation of the electrode particles [2]. To understand the latter
degradation phenomena, modeling and predicting the stresses in
the electrode particles due to external mechanical loads and
internal chemical processes is needed. The importance of under-
standing the interaction between chemical and mechanical phe-
nomena in batteries is further highlighted when incorporating
ll rights reserved.
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lithium batteries into structural composites to increase their stor-
age-to-weight ratio. Such concepts have recently been advocated
for aerospace systems dominated by weight constraints [3]. How-
ever, embedding a battery into a composite induces mechanical
loads on the battery during manufacturing and operation.

In order to address the concerns of the relatively short lifecycle
and safety problems in lithium batteries as well as to integrate bat-
teries into structural composites, detailed understanding and
mathematical modeling of the electrochemical and mechanical
behavior and failure mechanisms of the batteries are needed. Bal-
ancing the trade-offs between structural and electrochemical per-
formance is requisite in order to achieve these goals. To this end, in
this paper we develop a coupled mathematical model of electro-
chemical and mechanical effects in lithium batteries.

The mechanisms causing capacity fade and failure of lithium
batteries were studied by Wang et al. [2] who experimentally
showed that capacity fade of lithium batteries after 60 cycles is
linked to crack growth in the electrode. Wang et al. [4] found for
LiCoO2 cathodes that the active material particles are not uni-
formly strained during cycling and that the cycling can lead to frac-
ture of the particles. Additional work on manganese cathodes has
been performed by Thackeray et al. [5] and Aifantis and Hackney
[6]. Several studies have focused on modeling the stress and crack
formation in a single electrode particle. Huggins and Nix [7] devel-
oped a one-dimensional model to predict stresses and fracture in
electrodes undergoing volume changes. Their model predicts a ter-
minal particle size below which particles are not expected to crack.
Aifantis and Dempsey [8] have modeled the crack formation in
electrodes using facture mechanics. Christensen and Newman [9]
predicted for a single spherical particle stress generation and
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fracture in lithium insertion compounds finding that particles are
more likely to fracture when used in high-power applications.
Christensen and Newman [10] also modeled the effects for a spher-
ical particle of lithium manganese oxide, predicting that the inter-
calation-induced stress can exceed the strength of the particles.
Aifantis et al. [11] used fracture mechanics to predict when an
electrode particle will fracture, finding that smaller particles are
preferable. Zhang et al. [12] studied intercalation-induced stress
in LiMn2O4 particles, treating the intercalation-induced stress
analogously to thermal stress and extending the spherical model
to ellipsoidal particles.

Only few experimental studies incorporating batteries into
structures and studying the effect of external mechanical loads
have been performed. Thomas and Qidwai [3] have placed com-
mercial lithium batteries in the wings of microair vehicles
(MAV) resulting in improved range of the MAV. In their mechan-
ical model of structurally integrated batteries, Thomas and Qid-
wai [3] assumed that the effects of electrochemical–mechanical
interactions are negligible. Pereira et al. have studied experimen-
tally the effects of flexural deflection [13] and uniaxial pressure
[14] on lithium thin film batteries. Their observations suggest
that up until structural failure of the battery, the electrochemical
performance of the battery is not significantly affected by exter-
nal mechanical loads. The same authors showed in a subsequent
paper [15] that the same batteries could be successfully incorpo-
rated into a carbon fiber composite lay-up without degrading the
battery performance and improving the mechanical properties of
the composite. Much of the previous work on modeling lithium
batteries has focused solely on electrochemical phenomena such
as in the work of West et al. [16] and Doyle et al. [17] who model
a porous electrode and in the work of Wang and Sastry [18]
where the cathode microstructure is modeled. Garcia et al.
[19,20] include mechanical effects in their model and study the
performance of various nano-structured electrode layouts using
dilute solution theory.

The goal of this study is to develop a numerical model to predict
the electrochemical–mechanical interactions in structurally inte-
grated lithium batteries subject to external mechanical loads, in or-
der to understand and quantify the effects of electrochemical and
mechanical parameters on performance and eventually, on failure
mechanisms in these batteries. Resolving directly all length scales
involved in the analysis of a battery, in particular modeling every
cathode particle individually, leads to an impractical computa-
tional burden. Therefore, our approach is based on porous elec-
trode theory and a multi-scale finite element formulation.
e
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1.1. Electrochemical–mechanical interaction

When discharging a battery, electrons flow from the anode
through an external electrical circuit and back to the cathode.
The electric work done in the circuit leads to a drop in the electrical
potential difference between the anode and cathode. A simple lay-
out of a lithium battery includes a negative (anodic) current collec-
tor, a lithium foil anode, a gel or liquid electrolyte, a porous
intercalation cathode, and a positive (cathodic) current collector.
The external positive and negative terminals are connected to the
current collectors. The cathode consists of two phases, a porous so-
lid, active material and a liquid electrolyte that fills the pores. In
the simplest case, the anode is a lithium foil while in modern bat-
teries and secondary (rechargeable) batteries porous graphitic
intercalation compounds are used as anode material systems. Re-
search is ongoing to develop anodes with larger storage capacity.
For the case of a porous anode, the anode is modeled the same
way as the cathode. This model can be applied to any battery sys-
tem that uses a single electrolyte. To structurally integrate the bat-
tery, it is sandwiched between two structural layers which results
in an interlaminate stress applied to the battery. A representative
configuration of a structurally integrated battery is depicted in
Fig. 1.

When an external electrical load is applied, lithium (Li) is oxi-
dized into Liþ ions and electrons at the anode–separator interface,
CAS. The electrons flow through the current collector and the exter-
nal circuit back to the positive current collector and into the cath-
ode active material. Meanwhile, the Liþ ions enter the solution
phase of the separator and are carried by migration and diffusion
across the separator–cathode interface, CSC , to the cathode active
material. At the surface of the active material particles, Liþ ions
are reduced and neutral Li diffuses into the cathode particles. To
charge a secondary lithium battery, these processes reverse. As Li
intercalates into the cathode active material particles, the particles
swell resulting in both particle- and battery-level strains and stres-
ses; for the Mn2O4 cathode discussed in this paper, the particles
can swell up to 6.5% [12]. External mechanical loads also cause bat-
tery- and particle-level stresses and affect the uptake of Li by the
particles in the cathode.

1.2. Proposed model

In this study we present a numerical approach for modeling the
electrochemical–mechanical interactions in lithium batteries. To
design and predict the performance of batteries subject to external
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mechanical loads, our model accounts for the influence of electro-
chemical parameters such as discharge rate, liquid volume fraction
in the cathode, active material particle size, and mechanical
boundary conditions from the interlaminate stress, on both elec-
trochemical and mechanical performance. This model predicts
the effects of external loads and allows one to assessing the
trade-offs between integration versus non-integration of the bat-
tery into a structural composite as well as suggest ways to improve
overall battery design.

As the performance of lithium batteries involves multiple
length scales, our approach is based on a multi-scale finite element
formulation of the electrochemical–mechanical interactions. At the
battery-level, or macro-scale, we model the Liþ ion movement
within the electrolyte and the resulting current and potential of
the electrolyte, the potential of the solid cathode material, and
the battery-level deformations. Within the cathode region, there
are both solid active material and liquid electrolyte phases. Rather
than modeling every individual cathode particle and the interac-
tions between these particles, we analyze a representative single
active material particle wherever information about the active
material is needed in the macro-scale problem. We refer to this
single particle model as the micro-scale. We model the lithium
concentration throughout the particle, the stress state, and the dis-
placements within the particle. Our numerical framework is based
on an implicit Euler backward scheme and a Galerkin finite ele-
ment model to discretize the macro- and micro-scale processes
in time and space. Homogenization is used to relate the processes
at the macro- and micro-scales.

The reminder of this paper is organized as follows: first we
present a mathematical model of a lithium battery at multiple
length scales and describe its numerical implementation for a
one-dimensional macroscopic battery model. We verify our
numerical framework by comparison with previous, experimen-
tally verified, mathematical models. Lastly, we present results for
the electrochemical and mechanical effects of varying the dis-
charge current density, the active material particle radius, the vol-
ume fraction in the porous electrode, and the external mechanical
boundary conditions due to interlaminate stress. For convenience,
a list of all symbols used in this paper is provided in Appendix A.
2. Numerical modeling of batteries

Numerical models predicting the transport and reaction pro-
cesses in batteries have been presented by Doyle et al. [17] who
modeled the electrochemical phenomena using porous electrode
theory and a finite-volume method. These models have shown
good agreement with experimental discharge experiments but do
not account for mechanical effects in the battery. Garcia et al.
[19] developed a two-dimensional micro-scale model describing
the mechanical effects of discharging and charging a battery based
on dilute solution theory. The model is solved using a finite ele-
ment scheme in space and a finite difference scheme in time. Ini-
tially, Garcia et al. [19] included only the separator and cathode;
later Garcia and Chiang [20] extended this model and included
an intercalation anode as well. Different nanostructures for the
electrodes were investigated showing that the shorter the distance
between the electrodes, the better the battery performs.

Wang and Sastry [18] developed a three-dimensional
micro-scale model predicting the electrochemical performance of
batteries with random and periodic micro-scale cathode layouts
by modeling every cathode particle. Stress effects, both internal
and external, are not included in this model. Zhang et al. [12] ac-
counted for the effects of internal stresses due to lithium intercala-
tion for single active material particles but ignore possible surface
traction due to constraint by the surrounding aggregate in the
electrode and/or due to external mechanical loads. They consid-
ered both spherical and ellipsoidal particles and showed that for
spherical particles, larger particle size and discharge currents re-
sult in higher stress; and for ellipsoidal particles, large aspect ratios
decrease the intercalation-induced stress for particles of a constant
volume. Recently, Zhang et al. [21] extended their particle model to
include heat generation during charge and discharge; resistive
heating was found to be the most significant heat generation
source at the particle-level.

2.1. Multi-scale modeling of structurally integrated batteries

The electrochemical and mechanical performance of Li batteries
strongly depends on the interaction between macro-scale and mi-
cro-scale phenomena, in particular within the porous cathode.
However, directly resolving all scales and modeling all particles
in the cathode is not practical. Instead we incorporate the micro-
scale effects into the macro-scale problem through homogeniza-
tion approaches and constitutive models that are derived from
homogenization methods. Three length scales can be distin-
guished: at the macro-scale, transport processes and mechanical
deformations in the entire battery layer are modeled; at the mi-
cro-scale, a single active material particle in the cathode is mod-
eled; and at the meso-scale, homogenization methods based on
particle aggregates relate the micro- and macro-scales.

Our macro-scale model is based on porous electrode theory
[22,23] and concentrated solution theory [22,23] predicting elec-
trochemical processes in the separator and cathode. With porous
electrode theory, the cathode is treated as a superposition of two
continuous phases—the solid material including the active mate-
rial, binders and conductive additives, and the pore-filling liquid
electrolyte. The liquid volume fraction of the cathode is called
the porosity, e, ðe ¼ Vl=VÞ. In the separator region of the battery
there is no solid phase, so e ¼ 1. We extend the porous electrode
theory to account for elastic and inelastic deformations due exter-
nal loads and electrochemical eigenstrains. In this study, we do not
model the structural layers surrounding the battery, and instead
apply generic mechanical boundary conditions that with proper
interpretation can be taken to represent the effect of the surround-
ing layers. We also assume that the lithium foil anode is perfectly
rigid and therefore only model the separator and cathode regions.
At the micro-scale, a single particle is modeled based on the work
of Zhang et al. [12]. To relate the micro- and macro-scales, meso-
scale homogenization methods are used.

The macroscopic response is characterized by the Liþ ion con-
centration in the liquid phase, cl, the electric potential of the liquid
phase, /2, the electric potential of the solid phase, /1, and the mac-
roscopic displacements, u. The intercalation of Liþ ions from the
electrolyte into the particles is represented by an effective macro-
scopic pore wall flux, jeff . The associated swelling of the particles
results in a macroscopic electrochemical eigenstrain ech.

At the micro-scale, a single representative active material parti-
cle is examined. The micro-scale variables include the microscopic
lithium concentration in the particle, cs, the microscopic displace-
ments, u, and the hydrostatic stress field, rh. The rate of diffusion
into the particle and subsequent particle swelling depends on the
microscopic pore wall flux, js and the mechanical surface traction
on the particle, Ps.

At the meso-scale, homogenization methods are used to relate
the macroscopic and microscopic variables. The micro-scale pore
wall flux, js, is dependent on the macro-scale variables, cl; /1,
and /2 and the micro-scale Li concentration at the particle surface,
cs;surf , through a micro-scale surface kinetics model. The micro-
scale surface pressure exerted on the particle surface, Ps, is depen-
dent on the macro-scale and micro-scale displacements, u, and u
through meso-scale homogenization of the mechanical variables.
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The macro-scale effective pore wall flux, jeff , is dependent on the
micro-scale pore wall flux, js, through meso-scale homogenization
of the electrochemical variables. The macro-scale chemically in-
duced eigenstrain, ech, is dependent on both the macro-scale
displacement, u, and micro-scale displacements, u through meso-
scale homogenization of the mechanical variables. The interdepen-
dency between macro- and micro-scale variables is illustrated in
Fig. 2. Note that the micro-scale boundary conditions for the mi-
cro-scale model depend on both macro- and micro-scale variables.

2.2. Macro-scale equations

The electrochemical transport of Liþ ions through the electro-
lyte and the current carried by the solid and liquid phases are de-
scribed by three equations:

e
@cl

@t
þr � Nþ 1

F
@t0
þ

@cl
i2 � rcl � 1� t0

þ
� �

jeff ¼ 0 ð1Þ

r � i1 þ F jeff ¼ 0 ð2Þ
r � i2 � F jeff ¼ 0 ð3Þ

with the following constitutive equations:

N ¼ �Deffrcl ð4Þ
i1 ¼ �kr/1 ð5Þ

i2 ¼ �jeff r/2 �
RT
F

1� t0
þ

� �
r ln cl

� �
ð6Þ

Eq. (1) describes the transport of Liþ ions through the electrolyte
with N being the Liþ ion flux. Faraday’s constant is denoted by F.
The ions are carried by both migration and diffusion effects. This
equation includes two source terms to account for the migration
due to the current i2 carried by the electrolyte and for the effect
of Li ions leaving the electrolyte and intercalating into the solid
material. The transference number, t0

þ, is the percentage of the cur-
rent in the solution carried by the Liþ ion rather than the anions in
solution; the transference number is in general a function of the
lithium ion concentration, cl. As Liþ ions leave the electrolyte and
enter the solid material, this creates an effective pore wall flux,
jeff . The currents i1 and i2 in the solid and liquid phases are governed
by Eqs. (2) and (3) with source terms to account for the effects of Li
entering and exiting the phases. In the solid phase, Ohm’s law (5)
relates the current and electric potential. In the liquid phase, the
constitutive relationship is defined by a modified Ohm’s law (6) that
accounts for the effect of Liþ ion concentration on the current. With-
in the cathode region, the effective electrolyte diffusivity and con-
ductivity are reduced from their values when no solid is present.
Fig. 2. Interdependency of m
A homogenization approach (the Bruggeman relations) is used to
model the transport properties in the porous electrode [23]:

Deff ¼ eD2 ð7Þ
jeff ¼ e3=2j1 ð8Þ

The above model was introduced by Doyle et al. [17]. We have
reformulated their model in terms of field and constitutive equa-
tions in order to facilitate the numerical treatment of the model.
To account for electrochemical–mechanical coupling phenomena,
we extended this electrochemical model to include mechanical
deformations:

r � rþ b ¼ 0 ð9Þ

assuming the following linear constitutive and kinematic
relationships:

r ¼ C : ðe� echÞ; e ¼ 1
2
ðruþruTÞ ð10Þ

where r is the macroscopic stress tensor, b the vector of body
forces, C the elasticity tensor, ech the electrochemical eigenstrain
tensor, and e the total macroscopic strain tensor due to the macro-
scopic displacements, u.

We model a current-controlled (galvanostatic) discharge pro-
cess. We assume that there are no resistive loses in the Li foil anode
and therefore for every electron that leaves the anode, a Liþ ion en-
ters the electrolyte. At the anode–separator interface, CAS, the an-
ode is modeled through a boundary condition of an influx of Liþ

ions and the requirement that all the current be carried by the elec-
trolyte. This results in Dirichlet boundary conditions on the current
carried by the solid and liquid phases and a Neumann boundary
condition on the Liþ ion flux. A Galvanic process is assumed to re-
late the current discharged to the number of lithium atoms that
disassociate at the boundary yielding the Liþ ion flux. At the cath-
ode–current collector interface, CCC , lithium cannot leave the bat-
tery, so the Liþ ion flux is zero, and the solid cathode material
carries all the current. We model two mechanical configurations
through an elastic model, which is either fixed at both ends or
has an external pressure applied at the anode–separator interface,
CAS. These boundary conditions are summarized in Table 1.

We start our simulations assuming an initially uniform Liþ con-
centration. The potential in the electrolyte is zero and the potential
in the solid phase is the open circuit potential, U0, which depends
on the initial Li concentration in the active particles. The battery
is initially undeformed. These initial conditions are summarized
as follows:
acro- and micro-scales.



Table 1
Boundary conditions for macro-scale equations.

Boundary condition Anode–separator
interface CAS

Cathode–current
collector interface CCC

Liþ ion flux N ¼ I 1�t0
þð Þ

F
rcl ¼ 0

Current in solid particles i1 ¼ 0 i1 ¼ I
Current carried by electrolyte i2 ¼ I i2 ¼ 0
Mechanical constraints u ¼ 0=r � n ¼ plm u ¼ 0
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cl ¼ cl;0 ð11Þ
/2 ¼ 0 ð12Þ
/1 ¼ U0ðcs;0Þ ð13Þ
u ¼ 0 ð14Þ

where cl;0 and cs;0 are initial lithium concentrations in the liquid and
solid phases.

2.3. Micro-scale equations

The micro-scale particle model is based on the work of Zhang
et al. [12] where diffusion-induced stress in a particle is treated
analogously to thermal stress. Zhang et al. solve the equations
assuming zero surface traction on the particle and with a con-
stant pore wall flux. In this study we place the particle within
the cathode matrix. This requires accounting for particle–matrix
and particle–particle interactions, both of which result in surface
tractions. While the micro-scale governing equations presented
subsequently are the same as in Zhang et al. [12], in our model
the boundary conditions change significantly. Also, the pore wall
flux into the cathode particles changes at different locations
throughout the cathode and is modeled by the Butler–Volmer
equation which depends on both micro- and macro-scale vari-
ables. The Butler–Volmer equation is widely used in electro-
chemistry to express the reaction kinetics at the particle
surface as the difference between the cathodic and anodic
currents [22,24].

The diffusion of Li within the particle is governed by [12]:

@cs

@t
þr � J ¼ 0 ð15Þ

and the static equilibrium for the particle in the absence of body
forces is [12]:

rij;i ¼ 0 ð16Þ

with the following constitutive and kinematic equations [12,17]:

J ¼ �Ds rcs �
Xcs

RT
rrh

� �
ð17Þ

rh ¼ r11 þ r22 þ r33ð Þ=3 ð18Þ

rij ¼
E

1þ m
eij þ

Em
ð1þ mÞð1� 2mÞ ekk �

EX
2ð1� 2mÞ cs

� �
dij;

eij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
ð19Þ

Note that the Liþ ion flux (17) only depends on the spatial gradient
of the hydrostatic stress,rrh, but not on the value of rh. The Liþ ion
flux at the particle surface is described by a Butler–Volmer model
[17]:

BVðcl;/1;/2; cs;surf Þ � Fjs ¼ 0 ð20Þ

with
BVðcl;/1;/2; csÞ ¼ i0 cs exp
aAF
RT

g� U0ðcsÞ
� �� ��

�ðcT � csÞ exp �aCF
RT

g� U0ðcsÞ
� �� ��

;

i0 ¼ Fk2ðcmax � clÞaC ðclÞaA ; g ¼ /1 � /2 ð21Þ

The macro-scale response influences the micro-scale model through
the boundary conditions at the particle surface. Stresses within the
electrode come from two sources: inhomogeneous swelling of the
cathode upon intercalation of lithium and from any applied external
load. Micro- and macro-scale stresses are related via homogeniza-
tion of the mechanical response; for this we use the Mori–Tanaka
Theory [25] described in Section 2.4. At the macro-scale, the loads
are propagated through the battery via Eq. (9). From the meso-scale
homogenization procedure, the micro-scale mechanical surface
pressure (23) exerted on the particle as a function of macro- and
micro-scale displacements is calculated. Macro-scale electrochemi-
cal effects are felt by the micro-scale through the Butler–Volmer
surface boundary condition (20). As the particle size is sufficiently
small such that the macro-scale variables do not vary significantly
over the size of a particle, we assume a uniform Liþ ion flux and
pressure at the surface of the particle:

J ¼ js ð22Þ
Pni ¼ rain̂ ð23Þ

We further assume a uniform initial Li concentration, cs;0, in the
particle:

cs ¼ cs;0 ð24Þ

The micro-scale particle-level effects are related to the macro-scale
through the homogenization methods described below.

2.4. Meso-scale homogenization methods

The microscopic pore wall flux is related to the macroscopic
pore wall flux assuming a uniform flux for all particles in a unit vol-
ume of the cathode [23]:

jeff ¼
3ð1� eÞ

Rs
js ð25Þ

Micro- and macro-scale mechanical properties are related using the
Mori–Tanaka (M–T) effective-field theory [25]. This homogeniza-
tion approach accounts for the interaction of spherical particles (so-
lid phase) within a matrix host (liquid phase). It has been
successfully used in a number of multiphysics settings where it
has been shown to agree well with experiments for effective elastic
properties [26], piezoelectric properties [27], thermal expansion
[28], the macroscopic stress–strain curve with a plastically-deform-
ing matrix [29], and estimates of internal stresses in individual par-
ticles [30]. Here we use the approach to generate estimates for the
effective elastic properties and overall chemical eigenstrains of the
aggregate as well as average stresses in the particles due to diffu-
sion and mechanical loads. At the macro-scale, the effective elastic-
ity tensor, Ceff , for the cathode is given by [31,32]:

Ceff ¼ Cm þ ð1� eÞðCs � CmÞAs ð26Þ

with

As ¼ AD½eIþ ð1� eÞAD��1 ð27Þ
AD ¼ ½Iþ SC�1

m ðCs � CmÞ��1 ð28Þ

where Cs and Cm are the stiffness matrices for the solid and liquid
(matrix) phases, I is the identity matrix, and S is Eshelby’s tensor,
which is a function of the aspect ratio of the particle and the Pois-
son’s ratio of the matrix phase.
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Based on the M–T, model the surface pressure exerted on a
spherical particle is a function of the macroscopic total strain, e,
and the macroscopic electrochemical eigenstrain, ech [31,32]:

Pni ¼ ðbs þ BsCeff ðe� echÞÞn̂ ð29Þ

with

bs ¼ ðI� BsÞ C�1
m � C�1

s

� 	
ech

s � ech
m

� �
ð30Þ

Bs ¼ BD½eIþ ð1� eÞBD��1 ð31Þ

BD ¼ Cs Iþ SC�1
m ðCs � CmÞ

h i�1
C�1

m ð32Þ

The macroscopic eigenstrain ech is computed as follows:

ech ¼ ech
m þ ð1� eÞ ech

s � ech
m

� �
þ ð1� eÞ C�1

s � C�1
m

� 	
bs ð33Þ

where ech
m and ech

s are the chemically induced strains in the matrix
and solid phases. We calculate ech

s from the solution to the micro-
scale problem and assume that there is no swelling of the matrix
phase of the cathode due to the Liþ ion concentration, i.e., ech

m ¼ 0.
The macroscopic total strain, e, is a function of the macroscopic dis-
placements (10). Therefore, the stress exerted on the particle sur-
face, Pni, is a function of the total macroscopic strain and the
microscopic strain of the particles. This interdependency results in
a nonlinear model at the micro-scale with micro-scale boundary
conditions on the surface pressure and pore wall flux both of which
depend on the macro-scale properties.
3. Numerical implementation

Because the distance across the battery from the anode to the
cathodic current collector is significantly smaller than the overall
size of a typical battery, we idealize the problem to one-dimension.
In our model, x = 0 corresponds to the anode–separator interface,
CAS, x ¼ ds to the separator–cathode interface, CSC , and x ¼ ds þ dþ
to the cathode–current collector interface, CCC . At the macro-scale,
the idealization to one-dimension is straight-forward. At the mi-
cro-scale, the three-dimensional problem is idealized to one-
dimension by assuming a spherical configuration and that the
spatial variation of the macroscopic variables can be neglected lo-
cally at the micro-scale. The surface pressure exerted on the parti-
cle comes from the meso-scale homogenization, and the surface
lithium flux is described by the Butler–Volmer equation.

At the macro-scale, we discretize Eqs. (1), (2), (3), and (9) in
time by an implicit Euler backwards scheme and in space by a
standard Galerkin finite element approach. The resulting discret-
ized form of the macro-scale field equations is:
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Nî2Bĉnþ1
l � NT 1� t0

þ
� �

Njeff

 !
dX

þ Ið1� t0
þÞ

F






x¼0
¼ 0 ð34Þ
Ri1 :

Z
X
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r ¼ Ceff ðe� echÞ; e ¼ Bûnþ1 ð41Þ

where N is the shape function vector and B is the discretized differ-
ential operator. The integrals are evaluated by standard Gauss
quadrature. The above equations are combined to yield the follow-
ing dynamic residual equations:

Rdyn ¼
1
Dt

M � ðx̂nþ1 � x̂nÞ þ Rðx̂nþ1Þ ¼ 0 ð42Þ

where the vector x̂ collects all macroscopic state variables,
ĉl; /̂1; /̂2; û, and the superscript n denotes the time increment.
At each time step, Eq. (42) is solved by Newton’s method. For the
sake of numerical efficiency and robustness, we derive the Jacobian
of the residual equations, Jdyn, analytically. Because ech and jeff de-
pend on cl; /1; /2, and u, the Jacobian is fully populated and de-
pends on the micro-scale state variables; the evaluation of Jdyn

will be outlined later.
In order to compute the effective pore wall flux jeff and the

chemical eigenstrains ech, at every Gauss point we solve a separate
micro-scale problem for given values of the macroscopic variables.
In this study, Eqs. (15) and (16) are solved assuming a spherical
particle geometry. This assumption simplifies the micro-scale cal-
culations to one-dimension. However, our computational frame-
work could be easily augmented to treat particles of any shape.
The continuous micro-scale equations for a spherical particle are
given in spherical coordinates in Appendix B. Combining an Euler
backward scheme and a Galerkin approach to discretize the mi-
cro-scale problem in time and space, the discretized governing
equations in spherical coordinates are:
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where the radial position r ¼ 0 is the center of the particle and
r ¼ Rs is the particle surface. The macroscopic variables cl; /1,
and /2 defined at a Gauss point of the macro-scale model are



Table 2
Material parameters.

Symbol Value Unit Reference

PEO—LiCF3SO3 electrolyte
cl;max 3920 mol/m3 [17]
cl;0 1000 mol/m3 [17]
Dl 7.5 � 10�13 m2/s [17]
j1 6.5 � 10�3 S/m
t0
þ 0.0107907 + 1.48837 � 10�4 cl – [17]

@t0
þ=@cl 1.48837 � 10�4 [17]

TiS2 cathode
cs;max 29,000 mol/m3 [17]
cs;0 299 mol/m3 [17]
Ds 5.0 � 10�13 m2/s [17]
rs 104 S/m [17]

Mn2O4 cathode
cs;max 22,900 mol/m3 [12]
cs;0 4351 mol/m3 [12]
Ds 7.08 � 10�15 m2/s [12]
rs 104 S/m
E 109 Pa [12]
t 0.3 – [12]
X 3.497 � 10�6 m3/mol [12]

Table 3
Geometric and discretization parameters and convergence criteria.

Symbol Value Unit Reference

Nominal setup for PEO—LiCF3SO3; TiS2 system
Rs 5 lm [17]
e 0.3 – [17]
I 12.1 A/m2 [17]
Mechanical boundary condition Fixed ends

Nominal setup for PEO—LiCF3SO3; Mn2O2 system
Rs 5 lm [12]
e 0.3 –
I 12.1 A/m2

Mechanical boundary condition Fixed ends

Macro-scale problem
Number of elements for separator 20
Number of elements for cathode 40
Newton convergence tolerance 1e�5

Micro-scale problem
Number of elements 30
Newton convergence tolerance 1e�5
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considered constant within the micro-scale model. The micro-scale
model is advanced in time synchronously with the macro-scale
problem.

To simplify the numerical treatment of the nonlinear flux
boundary conditions, we introduce the micro-scale pore wall flux,
js, as an independent variable and consider the Butler–Volmer
equation (45) as part of the governing equations. Furthermore, to
limit the order of spatial derivatives in the diffusion equations
(43) and (46) to first order, the hydrostatic stress is introduced
as an independent field and the hydrostatic stress equation is sat-
isfied in a weak sense:

Rrh
:

Z
r

NT 4pðNr̂Þ2Nr̂nþ1
h � NT 4pðNr̂Þ2ðrr þ 2rtÞ=3

� 	
dr ð49Þ

To consistently approximate displacements and hydrostatic stress
and to avoid numerical instabilities, the order of polynomial inter-
polation for the micro-scale displacements needs to be larger than
for the hydrostatic stress. For this study, quadratic elements are
used for the displacements and concentrations while linear ele-
ments are used for the hydrostatic stress interpolation.

The particle surface pressure depends on the macroscopic total
strain and the microscopic volumetric strain through Eqs. (29)–
(33). For spherical particles, the microscopic chemically induced
eigenstrain of the solid particles, ech

s , is equal to the volumetric
strain of the solid particles, eV which depends only on the displace-
ment at the surface of the particle:

eV ¼
1
3

Rs þ unþ1
surf

� 	3

R3
s

� 1

0
B@

1
CA ð50Þ

The homogenized macroscopic electrochemical eigenstrain ech is
calculated from eV using Eq. (33) with ech

s ¼ eV . The conversion from
micro-scale pore wall flux js to the effective macro-scale flux jeff is
given by the homogenization model of Eq. (25).

For solving the nonlinear subproblems at each time step at the
macro- and micro-scale, we use analytically derived Jacobians. In
order to evaluate the macro-scale Jacobian, Jdyn, the derivatives of
the micro-scale variables js and ech with respect to the macro-scale
state variables cl; /1; /2, and u are required. The macroscopic
variables cl; /1, and /2, are only present in the micro-scale model
through the Butler–Volmer equation (20). The macroscopic dis-
placements, u, are only present in the boundary condition of the
elastic residual (16) though the surface pressure. Differentiating
the Butler–Volmer equation with respect to cl; /1, and /2 and
the elastic residual with respect to u, we can compute the required
derivative of js with respect to the macroscopic variables. Details of
this algorithm are given in Appendix C. The derivatives of electro-
chemical eigenstrain ech with respect to the macro-scale variables
are slightly more involved and require the following expansion:

@ech

@n
¼ @ech

@eV

@eV

@usurf

@usurf

@n
; for n ¼ cs;/1;/2 ð51Þ

@ech

@u
¼ @ech

@eV

@eV

@usurf

@usurf

@u
ð52Þ

The derivatives @ech=@eV and @eV=@usurf can be found by differenti-
ating Eqs. (33) and (50), respectively. The evaluation of the deriva-
tives of the displacements at the particle surface with respect to the
macroscopic variables is given in Appendix C.

4. Verification

We verify our macro- and micro-scale models separately using
published data. While our model is not specific for any particular
material systems, for verification purposes we model a lithium foil
anode, PEO—LiCF3SO3 electrolyte, and either a TiS2 or Mn2O4 cath-
ode active material. Other materials systems with binary electro-
lytes can be modeled given their electrochemical and mechanical
properties. The material and geometric parameters along with
the discretization parameters and convergence criteria used in
the following simulations are given in Tables 2 and 3.

We verify our micro-scale problem by comparison with the re-
sults of Zhang et al. [12]. We compare our model for a single Mn2O4

particle of radius Rs ¼ 5 lm with zero surface traction and a con-
stant discharge current of I ¼ 10 A=m2, which corresponds to a sur-
face pore wall flux of js ¼ 10 A=m2=F. The particle is discretized by
30 elements. Piecewise quadratic interpolations are used to
approximate the lithium concentration and displacements and a
piecewise linear interpolation is used for the hydrostatic stress.
The evolution of the lithium concentration cs in the particle is sim-
ulated for 1000 s with a time step Dt ¼ 25 s.

Zhang et al. [12] compare their diffusion–stress coupling model
(17) to the classical diffusion equation:

J ¼ �Dsrcs ð53Þ

They find that including the stress effect in Eq. (17) enhances the
diffusion through the particle resulting in smaller Li concentration



Fig. 3. Li concentration in a single particle at t = 1000 s; solid line: the stress-
enhanced diffusion model; dashed line: classical diffusion model.
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gradients. Our results, shown in Fig. 3, are indistinguishable from
those of Zhang et al. [12].

To verify our macro-scale model, we compare our results with
those of Doyle et al. [17] for a discharge current-controlled simula-
tion of a one-dimensional battery model. The battery consists of a
lithium foil anode, a separator of width ds ¼ 50 lm, and a cathode
of width dþ ¼ 100 lm and volume fraction e ¼ 0:3. The material
system includes a PEO—LiCF3SO3 electrolyte and TiS2 cathode par-
ticles with Rs ¼ 1 lm. The micro-scale diffusion of Li into the cath-
ode particle is modeled by Eq. (53) and solved semi-analytically
[17]. The separator is discretized by 20 and the cathode by 40 ele-
ments of uniform length. All macro-scale variables cl; /1; /2, and
u are approximated by piecewise linear interpolations. The time
step ranges from Dt ¼ 1 to 10s.

In Fig. 4, we plot the lithium concentration cl over the normal-
ized distance from the anode, x=ðds þ dþÞ, at different instances in
time. Overall our simulation results agree well with ones of Doyle
et al. [17]. However in the first few seconds, the evolutions of the
Liþ ion concentration differ slightly as shown in Fig. 5. Our model
predicts deeper levels of Liþ ion depletion at the separator–cathode
interface, CSC . This discrepancy is due to differences in the numer-
ical solution procedure. Doyle et al. [17] use a finite-volume ap-
proach and add artificial diffusion via an upwinding scheme to
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Fig. 4. Evolution of Liþ concentration in electrolyte over time.
stabilize the results at the separator–cathode interface, CSC . We
do not observe any instability at this interface in our finite element
formulation and therefore do not apply any artificial diffusion.
5. Numerical study of electrochemical–mechanical interaction
phenomena

Our computational framework can be readily used to study
electrochemical–mechanical interactions within the battery. To
illustrate this capability, we revisit the one-dimensional battery
model described above and simulate again a single current-con-
trolled discharge process. Here we consider a different material
system consisting of PEO—LiCF3SO3 electrolyte and Mn2O4 cath-
ode. This particular material system is chosen due to the availabil-
ity of material parameters; other systems can be modeled given
the material properties. This cathode material system experiences
a volume change of up to 6.5% upon lithium insertion [12]. The
nominal setup for this system is summarized in Tables 2 and 3.

By varying the electrochemical parameters of the cathode parti-
cle radius, the porosity of the cathode, and the discharge current
density, we study how the electrochemical properties affect both
electrochemical and mechanical performance. Similarly, by chang-
ing the mechanical boundary conditions and applying external
mechanical loads of different magnitudes, we study the influence
of mechanical parameters on the battery performance. We can
only partially verify our numerical studies due to a lack of pub-
lished experimental and numerical studies on the effect of applied
pressures on the battery performance.

5.1. Effect of discharge current density

Figs. 6 and 7 show the effects of different discharge current den-
sities on the electrochemical performance of the battery. As ex-
pected, a higher current density leads to a lower utilization of
the active material and therefore lower capacity. Utilization is
the ratio of the actual over the maximum Li concentration that
can intercalate into the active cathode material. In Fig. 6 we plot
the potential difference between the battery electrodes versus
the average utilization of the active cathode material. At higher
current densities the voltage drops at lower utilizations, which is
agreement with Doyle et al. [17], and results in higher Li concen-
tration gradients in the cathode material, as seen in Fig. 7. At high-
er discharge rates the active material closest to the separator–
cathode interface, CSC , saturates with Li faster than the active
material farther from the interface. At lower currents, the utiliza-
tion across the cathode is more even.

Higher Li concentrations result in higher microscopic stresses.
At any time step, the maximum radial stress in the spherical parti-
cles is always located at the center of the particle. Subsequently,
we refer to the radial stress at the particle center as the peak radial
stress. In Fig. 8, the maximum of the peak radial stress, which is the
maximum over time of the peak radial stress, reached during dis-
charge up to an average utilization of 0.3936 is plotted for different
current densities. Larger discharge currents also result in greater
maximum macroscopic electrochemical eigenstrains over time as
seen in Fig. 9. Note the distributions of the macroscopic electro-
chemical eigenstrains follow the ones of the averaged Li concentra-
tion in the solid particles.

5.2. Effect of particle size

Motivated by increasing capabilities to synthesize engineered
cathode materials, we study the effects of the particle size on the
electrochemical and mechanical performance. Simulations with
particle sizes ranging from 1 to 20 lm were performed. For this
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portion of the study, the volume fraction, e, is kept constant at 0.3
and the particle size is varied, therefore the overall electrochemical
capacity of the battery is unchanged. Our results show that smaller
particle sizes give better electrochemical performance, character-
ized by the dependency of the battery voltage on the utilization
of the solid cathode material, as shown in Fig. 10. Smaller particles
also experience lower peak radial stresses over time, as shown in
Fig. 11. This is in qualitative agreement with Wang and Sastry’s
simulations [18] which show a decrease in performance with lar-
ger particle sizes, and with Aifantis, Hackney, and Dempsey’s work
[11] which predicts that smaller particle sizes will be less suscep-
tible to failure due to cracking.
5.3. Effect of porosity of the cathode

The porosity, e, the liquid volume fraction in the cathode, affects
the battery in terms of overall capacity and utilization of the active
material. If the porosity is high, the energy capacity of the battery
is lower because there is less active material into which Li can
intercalate. In this case the active cathode material particles uptake
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Liþ ions fairly evenly as seen in Fig. 12. However, if the porosity of
the battery is too low, Liþ ions do not effectively move through the
liquid phase to the deeper regions of the cathode and higher gradi-
ents in Li concentration will be found across the cathode. In this
case, the higher gradients prohibit full utilization of the cathode,
so the increased theoretical capacity of the battery is not reached.
The lower porosity also leads to higher macroscopic eigenstrains
across the battery cathode as seen in Fig. 13.

5.4. Effect of mechanical boundary conditions

We compute the macro- and micro-scale response of our bat-
tery model for varying mechanical boundary conditions. We study
two cases: (a) the battery is clamped at both ends, and (b) an exter-
nal pressure is applied at the anode–separator interface, CAS, and
the cathode–current collector interface, CCC , is clamped. Pressure
values of ±10 MPa and ±100 MPa are considered.

In the case of spherical particles, our model predicts that there
is no influence of the interlaminate stress on the electrochemical
performance of the battery. As pointed out earlier, the micro-scale
diffusion equation (17) depends only on the gradient of the hydro-
static stress. The predicted insensitivity of the electrochemical per-
formance with respect to external mechanical loading conditions is
in qualitative agreement with the experimental work of Periea
et al. [15].

However, the dependency of macro- and micro-scale stresses
across the battery on the mechanical boundary conditions cannot
be ignored, as they will contribute to failure mechanisms in the bat-
tery. As is expected, greater interlaminate stress correlates to high-
er strains and stresses across the battery as seen in Figs. 14 and 15.
6. Conclusions

We have developed a multi-scale finite element model of the
electrochemical and mechanical interactions in lithium batteries
subject to external mechanical loads. At the macro-scale, we have
extended Doyle and Newman’s electrochemical porous electrode
model to account for elastic deformations. At the micro-scale we
have accounted for differences in Liþ ion flux into the particles
due to interfacial surface conditions using the Butler–Volmer
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equation and for surface pressures exerted on the particles by the
composite cathode matrix. We have introduced a meso-scale
aggregate model to relate micro- and macro-scale mechanical
effects. The macro- and micro-scale models are discretized in time
by an implicit Euler backward scheme and in space by a Galerkin
finite element method. The nonlinear macro- and micro-scale
subproblems are solved by Newton’s method using analytically
derived Jacobians.

We have verified our macro- and micro-scale models separately
through comparison with previously published simulation results.
The potential of our multi-scale model was demonstrated by
numerical studies on the influence of electrochemical and mechan-
ical parameters on the battery performance. Our simulation results
are in agreement with related simulation results and experimental
studies, which predict better electrochemical performance and
lower particle-level stresses for smaller cathode particle sizes
[11,12], and no influence of mechanical boundary conditions on
electrochemical performance [15].

The numerical implementation and studies presented in this
paper were limited to spherical cathode particles and single cur-
rent-controlled discharge processes, neglecting accumulated stres-
ses due to cycling of the battery. However, our numerical
framework already allows the simulation of discharge–charge cy-
cles and can be easily augmented to include more complex particle
geometries. Currently, we are extending this framework to account
for thermal effects at both macro- and micro-scale.
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Appendix A. List of symbols
Symbol
 Units
 Description
As; Bs; bs
 Concentration factors (Mori–Tanaka
theory)
B
 –
 Derivatives of the shape function
vector
b
 Pa
 Body force

C
 Pa
 Homogenized elasticity tensor

Cs; Cm
 Pa
 Isotropic elastic stiffness matrix for

solid and liquid phases

cl
 mol/m3
 Concentration of lithium in

electrolyte

cmax
 mol/m3
 Max concentration in polymer

cs
 mol/m3
 Concentration of lithium in solid

particles
(continued on next page)
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cT
 mol/m3
 Max concentration in solid

Dl
 m2/s
 Diffusion coefficient of electrolyte

Ds
 m2/s
 Diffusion coefficient of lithium in the

solid

E
 Pa
 Young’s modulus of solid particles

e
 –
 Macroscopic strains due to

macroscopic displacements

ech
 –
 Chemically induced eigenstrain

eV
 –
 Volumetric strain of a particle

F
 C/mol
 Faraday’s constant

I
 A/m2
 Superficial current density

i1
 A/m2
 Current density in solid phase

i2
 A/m2
 Current density in liquid phase

jeff
 mol/m2 s
 Macro-scale effective pore wall flux

js
 mol/m2 s
 Micro-scale pore wall flux

k2
 m4/mol s
 Reaction rate constant at cathode/

polymer interface

N
 mol/m2/s
 Lithium ion flux in the electrolyte

N
 –
 Shape Function vector

Ps
 Pa
 Surface pressure exerted on a

particle

plm
 Pa
 Surface pressure

R
 J/mol/K
 Universal gas constant

Rs
 m
 Radius of cathode particles

r
 m
 Micro-scale distance from center of

cathode particle

S
 Eshelby’s tensor

T
 K
 Temperature

t
 s
 Time

t0
þ
 –
 Lithium ion transference number
U0
 V
 Open circuit potential

u
 m
 Macroscopic displacements

u
 m
 Microscopic displacements within a

particle

V
 m3
 Total volume

Vl
 m3
 Volume of liquid phase

x
 m
 Distance from anode
aA; aC
 –
 Anodic and cathodic transfer
coefficients
ds
 m
 Thickness of separator

dþ
 m
 Thickness of composite cathode

e
 –
 Porosity, liquid volume fraction

eij
 –
 Microscopic strain

/1
 V
 Potential in solid phase

/2
 V
 Potential in liquid phase

g
 V
 Surface overpotential

jeff
 S/m
 Effective conductivity of electrolyte

j1
 S/m
 Conductivity of electrolyte, nothing

else present

k
 S/m
 Conductivity of solid matrix

m
 –
 Poisson’s ratio for solid particles

X
 m3/mol
 Partial molar volume

CCA
 Current collector–anode interface

CAS
 Anode–separator interface

CSC
 Separator–cathode interface

CSC
 Cathode–current collector interface

r
 Pa
 Macroscopic stress

r
 Pa
 Microscopic stress

rh
 Pa
 Hydrostatic stress
Appendix B. Micro-scale equations in spherical coordinates

We summarize the micro-scale equations in spherical coordi-
nates which are used in our numerical implementation. The mi-
cro-scale governing equations are:
@cs

@t
þ rr þ

2
r

� �
J ¼ 0 ð54Þ

drr

dr
þ 2

r
ðrr � rtÞ ¼ 0 ð55Þ

rh � ðrr þ 2rtÞ=3 ¼ 0 ð56Þ
with the corresponding constitutive equations:

J ¼ �Ds rrcs �
Xcs

RT
rrrh

� �
ð57Þ

rr ¼
E

ð1þ mÞð1� 2mÞ ð1� mÞruþ 2m
u
r
�X

3
~csð1þ mÞ

� �
ð58Þ

rt ¼
E

ð1þ mÞð1� 2mÞ
u
r
þ mru�X

3
~csð1þ mÞ

� �
ð59Þ

The boundary conditions at the particle surface, r ¼ Rs, are:

J ¼ js ð60Þ
rr ¼ Ps ð61Þ
BVðcl;/1;/2; cs;surf Þ � Fjs ¼ 0 ð62Þ
where BVðcl;/1;/2; cs;surf Þ is defined as in Eq. (21). The boundary
conditions at the particle center, r ¼ 0, are:

rrcs ¼ 0 ð63Þ
u ¼ 0 ð64Þ
Appendix C. Jacobian of micro-scale problem and derivatives of
micro-scale variable with respect to macro-scale variables

The Jacobian of the micro-scale problem is simplified to show
only variables describing surface phenomena and includes the fol-
lowing terms:

J ¼

@Rcs

@cs
0

@Rcs

@rh

@Rcs

@js

@Ru

@cs

@Ru

@u
0

@Ru

@js

@Rrh

@cs

@Rrh

@u
@Rrh

@rh

@Rrh

@js

@RBV

@cs

@RBV

@u
@RBV

@rh

@RBV

@js

2
666666666664

3
777777777775

ð65Þ

In order to find values for the derivatives of the micro-scale vari-
ables with respect to macro-scale variables, n ¼ cl; /1; /2 and u,
the following systems of linear equations are solved:

J

@cs

@n
@usurf

@n
@rh

@n
@js

@n

2
6666666664

3
7777777775
¼ �

0
0
0

@RBV
@n

2
664

3
775 ð66Þ

J

@cs

@u
@usurf

@u
@rh

@u
@js

@u

2
6666666664

3
7777777775
¼ �

0
@Ru
@u
0
0

2
664

3
775 ð67Þ
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where the derivatives @RBV=@n with n ¼ cl; /1; /2 and @Ru=@u are
found analytically.
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