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Abstract

In this article we consider a question: what is the relation between two Calabi-Yau manifolds of two 
different Berglund–Hubsch types if they appear as hyper–surfaces in the quotient of the same weighted 
projective space. We show that these manifolds are connected by a special change of coordinates, which we 
call the resonance transformation.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

Let W 0
1 (xi) and W 0

2 (xi) be two non–degenerate quasi-homogeneous polynomials satisfying

W 0
1,2(λ

ki xi) = λdW 0
1,2(xi) (1)

for λ ∈ C∗. Assume that W 0
1 (xi) and W 0

2 (xi) satisfy the Calabi–Yau condition

5∑
i=1

ki = d (2)
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and belong to two different Berglund–Hubsch (BH) types [1]. They define two Calabi–Yau orb-
ifolds (W 0

1 , G) and (W 0
2 , G), as hyper–surfaces in the quotient of a weighted projective space 

(WPS) Pk1,k2,k3,k4,k5 by some group G [1,2]. The group G must be admissible, which means that 
the group G is a subgroup of Aut(W 0

1 ) and Aut(W 0
2 ), and also contains the element jw acting 

in projective coordinates as jw : xj → exp(2πikj /d)xj . Since the BH polynomials W 0
1 (xi) and 

W 0
2 (xi) are invertible, using BHK mirror construction [1,2] for both of them, we obtain two mir-

ror CY orbifolds (W̃ 0
1 , G̃) and (W̃ 0

2 , G̃), arising as hyper–surfaces in quotients of two different 
projective spaces, Pk1(1),k2(1),k3(1),k4(1),k5(1) and Pk1(2),k2(2),k3(2),k4(2),k5(2). The situation where 
this occurs is called the “multiple mirror phenomenon”.

A natural question arises: what is the relationship between two BHK multiple mirrors (W̃ 0
1 , G̃)

and (W̃ 0
2 , G̃)? It has been proven in different ways by Shoemaker [3], Borisov [4], Kelly [5] and 

Clarke [6] that multiple mirrors of BHK are bi–rationally equivalent. Below we give a simple 
proof of this assertion. Also in [7], the periods of the non-vanishing holomorphic form of the 
multiple mirrors were calculated in a special case and it was found that they match. In ref. [8]
it has been proven that the periods of the non vanishing holomorphic form coincide for all the 
cases when multiple BHK mirrors of the loop and chain types appear.

But there is one more question: what is the relation between two original Calabi–Yau (CY) 
orbifolds (W 0

1 , G) and (W 0
2 , G)? Since these varieties appear as hyper–surfaces in the quotient 

of the same weighted projective space, it is natural to think that each of them belongs to the 
complex structure moduli space of the other. However, a problem arises, how exactly are they 
related? In this paper, we prove that this relation is given by some change of coordinates, which 
we call the resonance transformation.

The plan of the paper is as follows. In section 2 we consider the relation between two sin-
gularities which are defined in the same quasi–homogenous space. In section 3 we recall the 
phenomenon of multiple BHC mirrors and give a simple proof of their birational equivalence 
[3–6]. In section 4, we formulate a hypothesis about the connection between the CY orbifolds 
themselves, whose multiple mirrors are bi–rationally equivalent. In section 5 we give an example 
of this connection for the case when two CY-manifolds of the Chain and Loop type appear in the 
same weighted projective space. In the appendix we give another example of Chain–Loop type 
correspondence.

2. Correspondence of singularities

We assume that we have two singularities, W 0
1 (xi) and W 0

2 (xi) which are defined in the same 
quasi–homogenous space. Namely,

W 0
r (λki xi) = λdW 0

r (xi), (3)

for r=1, 2 and λ ∈ C∗ is any complex number. The integers ki are called the weights. We assume 
that both singularities obey the same quasi–homogenous condition, and d is their degree. We 
assume that we have m variables, i = 1, 2, . . . , m.

Our goal is to prove that W 0
1 (xi) is the same singularity as W 0

2 (xi), the result of the change of 
variables xi → yi and the result of the simultaneous deformation on the moduli space of W 0

2

W 0
1 (xi) = W 0

2 (yi) +
h∑

φlel(y). (4)

l=1

2
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Here quasi-homogeneous polynomials el(y) of degree d , belong to the ring of polynomials mod-

ulo the elements of the ideal generated by 
∂W 0

2
∂yi

and φl are the coordinates on the moduli space of 
the second singularity.

The change of variables (‘resonance transformation’) is the most general polynomial trans-
formation which is allowed by the quasi–homogenous condition. It is given by

xi →
ni∑

n=1

an,iJn,i(y), (5)

where

Jn,i =
m∏

j=1

y
P(n)ij
j . (6)

And the non–negative integers P(n)ij are the solutions to the equation,

m∑
j=1

P(n)ij kj = ki . (7)

We assume the most general solution to this equation and we denote by ni the number of solutions 
corresponding to ki . This is clearly the most general resonance transformation compatible with 
the quasi–homogeneity. The number of unknowns is given by

N =
m∑

i=1

ni. (8)

Now we get to the equations that must be satisfied by the resonance transformation. We wish 
to find a solution for the unknowns an,i . We denote by

W 0
1 (xi(yj )) = W2(yi), (9)

where xi(yj ) is the resonance transformation, eq. (5).
The equations that must be satisfied by an,i are of two kinds. For simplicity, we assume for 

now that W 0
2 (yi) is of Fermat type,

W 0
2 (yi) =

m∑
i=1

y
Ai

i , (10)

where Ai is an integer compatible with the grading,

Ai = d/ki, (11)

where d is an integer and for all i = 1, 2, . . . , m. Then the first equation is

C(W2(yi), y
Ai

i ) = 1, (12)

where i = 1, 2, . . . , m and where C(a, b) denotes the coefficient of monomial b in the singularity 
a. The second equation is

C(W2(yi),
∂W 0

2

∂yi

m∏
y

P(n)i,j
j ) = 0 (13)
j=1

3
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for all i, n = 1, 2, . . . , m and n �= i. Here we see again that the equations are in one-to-one corre-

spondence with 
∏m

j=1 y
P(n)ij
j and, in particular the number of equations is given by N = ∑

i ni . 
Thus we have always the exact same number of equations as unknowns, eq. (5). This indicates 
that generically, there is a solution for these equations and we find that generically,

W1(xi(yi)) = W2(yi) +
∑

l

φlel(y), (14)

where el(y) correspond to the moduli of the singularity W2,

el(y) =
∏

y
mi

i , where mi ≤ si − 2, (15)

and integers mi obey the quasi–homogeneity condition, eq. (7), and l runs over all moduli.
Let us discuss some examples. Consider the ‘loop’ singularity

W1(xi) = xn−1
1 x2 + xn−1

2 x1. (16)

Here m = 2, k1 = k2 = 1 and d = n, which is an integer n ≥ 3. Using the symmetry we may 
write the transformation, eq. (5), as

x1 → αy1 + βy2, x2 → αy2 + βy1. (17)

We assume that

W2(yi) = yn
1 + yn

2 , (18)

which is of Fermat type. Here, α and β are the two unknowns. We define,

W = W1(xi(yi)) (19)

Then, the two equations become, according to eq. (12),

q1 = C[W,yn
1 ] − 1 = 0 (20)

q2 = C[W,yn−1
1 y2] = 0 (21)

We solve for q1 = q2 = 0, to get a and b. We denote the solution as

{a → a0, b → b0} (22)

and finally,

W̄ = W(a0, b0) (23)

which would be of the form W1 up to moduli.
For n = 3 we find

a0 = −1, b0 = exp(iπ/3) (24)

as one of the solutions of eq. (12). Substituting we find

W̄ = W2 = y3
1 + y3

2 , (25)

as expected, since there are no moduli in this case.
For n = 4 we find,

a0 = −(1 + i)/2 − √
2, b0 = (1 + i)/2 − √

2, (26)
4
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where i = √−1, here. Substituting, we find,

W̄ = W(a0, b0) = y4
1 + y4

2 + 6y2
1y2

2 . (27)

Which means that W1 and W2 are in the moduli space of one another.
Repeating the calculation for n = 5 we find expressions for a0 and b0, which are approxi-

mately

a0 = 0.541939 − 0.074175i, b0 = 0.0661011 − 1.17621i (28)

and substituting we find

W̄ = y5
1 + y5

2 + (3 + √
11i)(y3

1y2
2 + y2

1y3
2), (29)

which is indeed of the form W2 up to moduli. These are all the allowed moduli in these cases. It 
is noteworthy that all the solutions, for a0 and b0 give in this case the same expression for W̄ up 
to ± on the square root. The same holds for n = 4 but for n > 5 it is not true anymore.

From these singularities we can build a Calabi–Yau manifold of complex dimension n/3. This 
we do by adding n − 2 additional variables with weight 1 and power n,

W3(xi) = xn−1
1 x2 + xn−1

2 x1 +
n∑

r=3

xn
r . (30)

Then the equation W3(xi) = 0 defines the n dimensional Calabi–Yau manifold. This manifold 
can be re–written by the transformation,

x1 → a0y1 + b0y2, x2 → a0y2 + b0y1, xr → yr , (31)

for r = 3, 4, . . . , n. Then we see that the manifold W3 = 0 becomes W4 = 0 where

W4 =
n∑

r=1

yn
r +

h∑
l=1

φlel(y), (32)

where el(y) generate a deformation on the moduli space. This holds for any n ≥ 3. Although, the 
explicit examples above are for n = 3, 4, 5.

It is noteworthy that the manifold W4 = 0 admits a realization as an solvable conformal field 
theory, deformed by some moduli. The CFT in this case is (n −2)n, i.e., n copies of the (n −2)th 
N = 2 minimal models. It is interesting that any singularity which has the correct homogeneity 
is isomorphic always to some product of minimal models plus moduli. For more details on this 
construction see refs. [11,12].

3. Bi–rationality of BHK multiple mirrors

In this section we give a simple proof that Calabi-Yau multiple BHK mirrors are bi–rationally 
equivalent [3–6]. We focus on the above mentioned case when the CY manifolds belong to two 
different BH types [1] and are defined as two hyper–surfaces in a weighted projective space 
Pk1,k2,k3,k4,k5 . Let the polynomials W 0

1 (xi) and W 0
2 (xi), be defined as

W 0
1,2(xi) =

5∑ 5∏
x

Mij (1,2)

j (33)

i=1 j=1

5
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and matrices M(1) and M(2) of two different BH types satisfy

5∑
j=1

Mij (1)kj (1) =
5∑

j=1

Mij (2)kj (2) = d (34)

where d =
5∑

i=1
ki .

Then the two mirror CY manifolds are given by zeroes of polynomials W̃ 0
1 and W̃ 0

2 defined as

W̃ 0
1,2(xi) =

5∑
i=1

5∏
j=1

x
MT

ij (1,2)

j . (35)

And MT
ij (1) = Mji(1) and MT

ij (2) = Mji(2) are matrices belonging two different BH types and 
satisfying

5∑
j=1

MT
ij (1)kj (1) =

5∑
i=1

ki(1) = d(1) (36)

and
5∑

j=1

MT
ij (2)kj (2) =

5∑
i=1

ki(2) = d(2) (37)

where kj (1) and kj (2) are mutually prime integers.
Let us look for the change of variables xi = xi(y1, ..., y5) which will ensure the relation

W̃ 0
1 (xi) = W̃ 0

2 (xi(y1, ..., y5)). (38)

The change of the variables yi =
5∏

j=1
x

Qij

j where matrix Q = M(1)M(2)−1, guarantees this 

equality, as well as

5∏
j=1

x
Mji(1)

j =
5∏

j=1

y
Mji(2)

j . (39)

This is also easy to check using the property of the matrices M(1) and M(2), which follows 
from Calabi–Yau condition, namely from

5∑
i,j=1

M−1
ij (1,2) = 1, (40)

that the change in the variables xi => λki(1)xi implies yi => λki(2)yi .
Moreover, this change of variables also implies the equality

5∏
j=1

xj =
5∏

j=1

yj , (41)

which means that, in addition to the bi–rationality of the two varieties, the chiral rings associated 
with them are isomorphic.
6
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4. The relation between two original Calabi–Yau orbifolds

In this section, we formulate a hypothesis about the connection between the CY orbifolds 
themselves, whose multiple mirrors are bi–rationally equivalent.

Namely, we assume that if two CY orbifolds, given by polynomials W 0
1 (xi) and W 0

2 (xi) of two 
different BH types, appear in the same weighted projective space Pk1,k2,k3,k4,k5 , then there exists 
a resonance transformation of the projective coordinates xi = fi(y1, ..., y5) and a deformation 
of the complex structure, generated by monomials el(y) of the same weight as W 0

2 (y) from the 
chiral ring, such that the following equation holds

W 0
1 (f (y)) = W2(y,φ) = W 0

2 (y) +
h21∑
l=1

φlel(y). (42)

We will call this the ‘Key equation’. The equality in the Key equation should not hold exactly, but 
in a weak sense, namely, modulo the sum of the elements of the ideal generated by derivatives of 
W 0

2 (y).
The resonance transformation xi = fi(y1, ..., y5) means that

xi =
∑
n

aniJn,i(y), (43)

where Jn,i(y), n = 1, 2 . . . are all possible quasi-homogeneous monomials which have the same 
weight as ki . That is

Jn,i(y) =
5∏

j=1

y
P(n)ij
j

and 
5∑

j=1
P(n)ij kj = ki .

We emphasize that the numbers P(n)ij in the resonance transformation are assumed to be 
positive integers.

Also we define generators of the chiral rings as el(y) =
5∏

i=1
y

Sli

i , where the integers Sli satisfy 

the equation 
5∑

j=1
Slikj = d and some inequalities described in [9,10].

It is convenient to choose the generators of the ideal in the form

Jn,i(y)∂iW
0
2 (y).

In the case when the weighted projective space admits the existence of more than one quasi-
homogeneous polynomial Jn,i(y) of weight ki , the number of resonances increases.

The reason of this effect can be seen from Table 1 in [8], which gives the weights of all 111
cases Pk1,k2,k3,k4,k5 that admit the existence of two CY-manifolds, of type Loop and Chain, simul-
taneously. In each case we find that at least one of the weights km is equal to 1. It follows that the 
number of resonances, is the number positive integers mj , that solve the equation 

∑
mjkj = ki .
j

7
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5. Example

In this section we give an example of the above connection for the case when the two CY-
manifolds are of the Chain and Loop type W 0

1 (xi) and W 0
2 (xi), which appear in weighted 

projective space P23,17,41,27,1. Then polynomials of the chain and Loop types, correspondingly, 
are defined as

W 0
1 (xi) = x4

1x2 + x4
2x3 + x2

3x4 + x4
4x5 + x109

5 (44)

and

W 0
2 (xi) = x4

1x2 + x4
2x3 + x2

3x4 + x4
4x5 + x86

5 x1. (45)

The resonance transformation of the projective coordinates xi = fi(y1, ..., y5) looks in this 
case as follows

x1 = a3y1 + a2y2y
6
5 + a1y

23
5 , (46)

x2 = a5y2 + a4y
17
5 , (47)

x3 = a8y3 + a12y1y2y5 + a11y1y
18
5 + a10y

2
2y7

5 + a9y2y
2
54 + a7y4y

14
5 + a6y

41
5 , (48)

x4 = a14y4 + a16y1y
4
5 + a15y2y

10
5 + a13y

27
5 , (49)

x5 = a17y5. (50)

Then from the Key equation (42) defined above we get the following five equations on the 
parameters of the resonance transformations an, n = 1, ..., 17

a4
3a5 = a4

5a8 = a2
8a14 = a4

14a17 = 1, (51)

4a3
1a3a4 + a4

4a11 + 2a6a11a13 + a2
6a16 + 4a3

13a16a17 = 1. (52)

As we explain below, we can impose the following twelve additional equations on the an

parameters,

4a4
1a4 − 4a2a

3
3a4 − 4a1a

3
3a5 + 4a4

4a6 + 4a2
6a13 − 2a11a12a16 + 4a4

13a17 − 4a15a
3
16a17

+ 4a109
17 = 0, (53)

16a3
1a2a4 + 4a4

1a5 − 4a2a
3
3a5 + 16a3

4a5a6 + 4a4
4a9 + 8a6a9a13 + 4a2

6a15 − a2
12a16

+ 16a3
13a15a17 = 0, (54)

(a4
5 − a8a14)a6a

4
2a4 + 4a1a

3
2a5 + 4a4a

3
5a9 + 6a2

4a2
5a10 − a7a8a13 + a2

10a13 + 2a9a10a15

+ a4
15a17 = 0, (55)

(a4
5 − a8a14)a11 + 4a3

2a3a5 − a7a8a16 + a2
10a16 + 2a10a12a15 + 4a4a

3
5a12 = 0, (56)

a4
2a5 + (a4

5 − a8a14)a9 − a7a8a15 + a2
10a15 + 4a4a

3
5a10 = 0, (57)

4a4(a
4
3 − a3

5a8) − 2a8a10a15 + 4a4
16a17 = 0, (58)

a7(a
4
5 − a8a14) + a2

10a14 = 0, (59)

4a13(a
2
8 − a3

14a17) − a2
7a14 = 0, (60)

2a12(a
4
5 − a8a14) = 0, (61)

4a15(a
2
8 − a3

14a17) = 0, (62)

4a16(a
2 − a3 a17) = 0, (63)
8 14

8
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2a10(a
4
5 − a8a14) = 0. (64)

Equations (51) imply that a3, a5, a8, a14 and a17 are non-zero.
It follows from equations (51) that (61)-(64) are fulfilled automatically. Taking this into ac-

count, from (60) and (59) we obtain that a7 = 0 and a10 = 0. Then, it follows from (58) and 
(57) that a16 = 0 and a2 = 0. Finally, from (56) we get that a4a12 = 0. Now we can choose the 
possible case a4 = 0, which implies that a15 = 0.

After that, the non-vanishing parameters satisfy three equations:

a2
6a13 + a4

13a17 + a109
17 = a1a

3
3a5, (65)

a4
1a5 + 2a6a9a13 = 0, (66)

2a6a11a13 = 1, (67)

along with the equations (51).
Thus we conclude that six parameters a2, a4, a7, a10, a12, a16 vanish and other eleven are 

subject of seven equations.
As a result, we have obtained a 4-parameter family of solutions to the Key equation, which 

confirms our conjecture about the relationship between the two CY-manifolds.
Now we want to explain the origin of the twelve equations (51)–(64) which simplify the 

solution of the Key equation (42), but do not follow from it.
After substituting the resonance transformations (46)-(50) into the polynomial W 0

1 (xi) =
x4

1x2 + x4
2x3 + x2

3x4 + x4
4x5 + x109

5 we obtain the sum of monomials of the form 
5∏

j=1
y

mj

j , where 

sets of positive integers mj satisfy the equation 
5∑

j=1
mjkj = d .

The coefficients of those monomials that coincide with one of the five monomials in W 0
2 (yi)

must be equal to one, as follows from the Key equation, and this gives equations (51).
Coefficients of other monomials whose sets mj satisfy the inequalities m1 < 4, m2 < 4, m3 < 2, 
m4 < 4, m5 < 86 [10] can be left unchanged for now since these monomials belong to the chiral 
ring.
Finally, there is a third set of monomials, such as y109

5 which do not satisfy either of the above 
two definitions, and do not belong to the ideal, that is, they are not equal to a sum of monomials 
of the form Jni(y)∂iW

0
2 (y). What to do with such monomials?

The answer is very simple. For example in the case y109
5 we just use the following equality

y109
5 = y23

5 ∂1W
0
2 (y) − 4y3

1y2y
23
5 . (68)

The first term on the right-hand side of this equality belongs to the Ideal, and the second term 
coincides with one of the generators of the chiral ring. Therefore, the “unwanted” monomials 
simply change the coefficients of the twelve admissible monomials of the chiral ring.
We have used this fact to reduce the number of chiral ring monomials in the Key equation (42)
by imposing equations (53)-(64). To get a general solution to the Key equation, we simply don’t 
have to impose these equations.

The equation for W2 which includes the moduli is then seen to be,

W2(y) = y(1)4y(2) + y(2)4y(3) + y(3)2y(4) + y(4)4y(5) + y(5)86y(1)+
3y(4)y(5)82 − 1

y(2)2 y(5)75 +
(

9 − 2i

)
y(1)y(2)y(5)69 − 2iy(3) y(5)68−
4 2

9
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y(2)y(4)y(5)65 − 1

4
y(1)2y(5)63 + y(1)y(4) y(5)59 + 6y(4)2y(5)55−

iy(1)y(2)2y(5)52 − iy(2)y(3) y(5)51 − 1

4
y(2)2y(4)y(5)48+

(6 + i)y(1)2y(2)y(5)46 + i y(1)y(3)y(5)45 +
(

1

2
− 2i

)
y(1)y(2)y(4) y(5)42−

3

2
iy(3)y(4)y(5)41 − 1

4
y(1)2y(4) y(5)36 + y(1)2y(2)2y(5)29 + 15

4
y(4)3y(5)28+

2y(1)y(2) y(3)y(5)28 − iy(1)y(2)2y(4)y(5)25 − 3

4
iy(2)y(3)y(4) y(5)24+

15

4
y(1)3y(2)y(5)23 + iy(1)2y(2)y(4) y(5)19 + 3

4
iy(1)y(3)y(4)y(5)18+

y(1)2y(2)2y(4) y(5)2 − 1

4
y(1)y(2)2y(3)y(5) + 2y(1)y(2)y(3)y(4)y(5)

6. Conclusion

In this work, we have shown that two Calabi-Yau manifolds of two different Berglund–Hubsch 
types that arise as hypersurfaces in an orbifold of the same weighted projective space are related 
by a special relation resonance transformation of coordinates.

Taking into account the correspondence [11,12], which plays an important role in superstring 
compactifications, between Calabi-Yau manifolds and N = 2 models of superconformal field the-
ory, it would be interesting to understand what the relationship found between two CY-manifolds 
means for the two N=2 SCFT models corresponding to them.
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Appendix A

Let us give now another example o the map from chain to loop models. This is the example 
number 105 in the [8] list. Here the weightes are

ki = {28,13,21,62,1} (69)
10
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and their sum d = 125 is the degree of quasi–homogenious polynomials W 0
1 and W 0

2 . The chain 
Calabi–Yau model is given by W1 = 0, where

W 0
1 = x4

1x2 + x8
2x3 + x3

3x4 + x2
4x5 + x125

5 . (70)

The loop model is given by the manifold W2 = 0 where

W 0
2 = y4

1y2 + y8
2y3 + y3

3y4 + y2
4y5 + y97

5 y1. (71)

Both are defined in the weighted projective space given by the weights ki and d .
The transformation that takes us from W 0

1 to W2 is the most general transformation respecting 
the weights. It is given by,

x(1) → a(1)y(5)28 + a(3)y(2)y(5)15 + a(2)y(3)y(5)7 + a(4) y(2)2y(5)2 + a(5)y(1),

x(2) → a(6)y(5)13 + a(7)y(2),

x(3) → a(8) y(5)21 + a(10)y(2)y(5)8 + a(9)y(3),

x(4) → a(11)y(5)62 + a(15)y(2) y(5)49 + a(13)y(3)y(5)41 + a(18)y(2)2y(5)36+
a(23)y(1) y(5)34 + a(16)y(2)y(3)y(5)28 + a(20)y(2)3y(5)23 + a(25)y(1)y(2) y(5)21+
a(14)y(3)2y(5)20 + a(19)y(2)2y(3)y(5)15+a(24)y(1)y(3) y(5)13 + a(22)y(2)4y(5)10+
a(27)y(1)y(2)2y(5)8 + a(17)y(2)y(3)2 y(5)7 + a(28)y(1)2y(5)6+
a(21)y(2)3y(3)y(5)2 + a(26)y(1)y(2) y(3) + a(12)y(4),

x(5) → a(29)y(5),

where for convenience we denote by y(w) and a(q), yw and aq respectively. There are 29 un-
knowns which we denoted by a(q), q = 1, 2, . . . , 29.

We denote the polynomial appearing above as Vr,j , i.e.,

xr →
nj∑

j=nj−1+1

a(j)Vr,j , (72)

where nj is the number of elements in the equation above, and n0 = 0. Here, nj = {5, 7, 10,

28, 29}. For example, V1,j ={y(5)28, y(2)y(5)15, y(3)y(5)7, y(2)2y(5)2, y(1)}j , j =1, 2, 3, 4, 5.
Now, we wish to find out the equations obeyed by the parameters a(j). These are the impo-

sition of the vanishing of the ideal ∂rW , multiplied by any of the Vr,j polynomial. Suppose that 
our manifold is given by the ‘loop’,

W 0
2 =

5∑
r=1

yAr
r yr+1, (73)

where we identify y6 = y1. Also, d = ∑5
r=1 Ar is the degree of homogeneity, which is the 

Calabi–Yau condition. The ‘chain’ W 0
1 is given by

W 0
1 =

5∑
r=1

xAr
r xr+1, (74)

with the identification x6 = 1 and A5 = d . Here A defines the theory. For the present example 
A = {4, 8, 3, 2, 97}. We also define the vectors
11
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fr = {yA5
5 , y

A1
1 , y

A2
2 , y

A3
3 , y

A4
4 } (75)

and

sr = yAr−1
r yr+1 (76)

where we define y6 = y1. We define

W2 = W 0
1 (x(y)), (77)

and x(y)) is the transformation eq. (72). Then, the equations obeyed by the a’s are given by

eq(j) = C[W2,Vr,j frAr ] − C[W2, srVr,j ] = 0, (78)

where C[P, Q] is the coefficient of the monomial Q in the polynomial P . Here j =
1, 2, . . . , n5 − 5. In Vr,j we omit the monomial yr and we have the equations,

eq(j) = C[W2, y
Ar
r yr+1] (79)

where y6 = y1 and j is n5 − 4, . . . , n5. This gives all the equations. These equations implement 
the vanishing of the ideal. We omit the explicit general form of the equations for the sake of 
brevity. However, one of the many solutions of these equations is given by,

a(5) → 1, a(7) → 1, a(9) → 1, a(12) → 1, a(29) → 1, a(1) → 1

22/3 ,

a(6) → 1, a(11) → 1, a(3) → 1

8

(
16 − 3 3

√
2
)

, a(13) → −1

2
,

a(15) → − 1

8 22/3 , a(18) → 1

512

(
640 − 12 3

√
2 − 1537 22/3

)

The rest of the variables are zero.
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