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For the case of two light flavors we propose the stringy description of the system consisting of two heavy
and three light quarks, with the aim of exploring the quark organization inside the system and its low-lying
Born-Oppenheimer potentials as a function of the heavy quark separation. Our analysis reveals several
critical separations related to the processes of string reconnection, breaking and junction annihilation. We
find that a compact pentaquark configuration makes the dominant contribution to the potential of the first
excited state at small separations, and for separations larger than 0.1 fm, the antiquark-diquark-diquark
structure emerges. Moreover, it turns out that the length scale of string junction annihilation is the same as
that for the QQq̄q̄ system. We also discuss the relation to the potential of the QQq system and some
relations among the masses of hadrons in the heavy quark limit.
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I. INTRODUCTION

Since the first observation [1] of the charmoniumlike peak
Xð3872Þ, more than 60 new hadrons have been observed at
high statistical significance. Most of those are potentially
exotic states such as tetraquarks, pentaquarks, hybrid mes-
ons, and glueballs.1 More recently, sightings of pentaquarks
consisting of three light quarks and one cc̄ pair have been
reported [4]. These are the example of QQ̄qqq states. In
general, there could exist other doubly heavy pentaquark
stateswhich are of typeQQqqq̄, but so far they have not been
observed experimentally.
One way to deal with doubly heavy quark systems is as

follows. Because of the large ratio of the quark masses, the
Born-Oppenheimer (B-O) approximation borrowed from
atomic and molecular physics [5] seems justified.2 In that
case the corresponding B-O potentials are defined as the
energies of stationary configurations of the gluon and light
quark fields in the presence of the static heavy quark
sources. The hadron spectrum is then calculated by solving
the Schrödinger equation in these potentials.

Although lattice gauge theory is a well-established
approach to nonperturbative QCD, it still remains to be
seen what it can and can’t do with regard to the doubly
heavy pentaquark systems. Meanwhile, the gauge/string
duality is a powerful way to understand gauge theories
outside of the weak coupling limit, and therefore may be
used as an alternative approach to gain important physical
insights into this problem.3 Also within this approach,
matters relating to pentaquarks have not been discussed in
the literature. Filling the latter gap is one of the aims of the
present paper.
The paper continues our study [8–10] on the doubly

heavy quark systems. It is organized as follows. We begin
in Sec. II by recalling some preliminary results and setting
the framework. Then in Sec. III we construct and analyze a
set of string configurations in five dimensions which
provide a dual description of the QQqqq̄ system in the
heavy quark limit. Among those we find the configurations
relevant to the two low-lying B-O potentials. In the process,
we introduce several length scales. These characterize
transitions between different dominant configurations,
and in fact, are related to different types of string inter-
actions: reconnection, breaking and junction (baryon ver-
tex) annihilation. We go on in Sec. IV to discuss further
improvements and extensions. Finally, in Sec. V we make
a few comments on some of the consequences of our
findings. In particular, we discuss some relations among the
masses of doubly-heavy-light and heavy-light hadrons.
Appendix A contains notation and definitions. To make
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QCD, see [6].
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known about the gauge/string duality in relation to QCD.
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the paper more self-contained, we give a brief review of the
QQq system in Appendix B.

II. PRELIMINARIES

A. A general procedure

In the presence of light quarks, the B-O potentials can be
determined along the lines of lattice QCD. This implies that
a mixing analysis based on a correlation matrix is needed
[11]. Its diagonal elements are given by the energies of
stationary configurations, whereas the off-diagonal ones
describe transitions between those configurations. The
potentials are determined by the eigenvalues of this matrix.
Now consider string configurations for the QQqqq̄

quark system from the standard viewpoint in four dimen-
sions [12]. We do so for Nf ¼ 2, two dynamical flavors of
equal mass, but the extension to Nf ¼ 2þ 1 is straightfor-
ward. First, let us look at the simplest disconnected
configurations only with the valence quarks. These are
the basic configurations shown in Fig. 1. Each consists of
the valence quarks and antiquark connected by the strings
and looks like a pair of noninteracting hadrons.
To pursue this further, we assume that other configura-

tions are constructed by adding extra string junctions and
virtual quark-antiquark pairs to the basic configurations.
Intuitively, it is clear that such a procedure will result in
configurations of higher energy. And so to some extent, the
junctions and pairs can be thought of as kinds of elementary
excitations. It turns out that for our purposes we would only
need relatively simple configurations. Adding two string
junctions to the basic configurations results in the penta-
quark configurations of Fig. 2.4 On the other hand, adding
one qq̄ pair results in the configurations of Fig. 3. The
configurations (d) and (e) are simple modifications of the
configurations (a) and (b), respectively. The configuration
(f) is obtained from those by quark exchange. It is note-
worthy that apart from the string junctions and virtual pairs

other elementary excitations may be involved. We return to
this in Sec. V.
The possible transitions between the configurations arise

from string interactions. In Fig. 4, we sketch four different
types of interactions which will be discussed in what
follows. This is part of the big picture of QCD strings
[12]. Later we will introduce the notion of a critical
separation between the heavy quarks, which characterizes
each interaction, that will enable us to shed some light on
the physics of QCD strings.

B. A short account of the five-dimensional
string model

In our study of the QQqqq̄ system, we will use the
formalism recently developed in [14]. Although we illus-
trate it by performing calculations in one of the simplest
anti–de Sitter (AdS)/QCD models, the formalism is general
and, therefore, adaptable to other models as well.
For the purposes of this paper, we consider a five-

dimensional Euclidean space with coordinates t; xi; r, and
with the metric

ds2 ¼ esr
2 R2

r2
ðdt2 þ ðdxiÞ2 þ dr2Þ: ð2:1Þ

Such a space represents a deformation of the Euclidean
AdS5 space of radius R, with a deformation parameter s.
The boundary is at r ¼ 0 and the so-called soft wall at
r ¼ 1=

ffiffiffi
s

p
. Two features make it especially attractive;

relative computational simplicity and phenomenological
applications. Here let us just mention that the model of [15]
yields a perfect fit to the lattice data obtained for the heavy
quark potential [16].5

As for Feynman diagrams in field theory, we need the
building blocks to construct the string configurations of
Figs. 1–3 in five dimensions. The first is a Nambu-Goto
string governed by the action

SNG ¼ 1

2πα0

Z
d2ξ

ffiffiffiffiffiffiffi
γð2Þ

q
: ð2:2Þ

FIG. 1. Basic string configurations. Three strings may join at a
point called the string junction [13]. Here and later, non-excited
strings are designated by straight lines. FIG. 2. Pentaquark configurations.

4Since they describe the genuine five-body interactions of
quarks, we call them the pentaquark configurations. As we will
see in Sec. III, such configurations make the dominant contri-
bution to the potential at small heavy quark separations. Because
of this, we will add the word “compact” as a prefix. 5For another perfect example, see [17].
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Here γ is an induced metric, α0 is a string parameter, and ξi

are world sheet coordinates.
The second is a high-dimensional counterpart of the

string junction called the baryon vertex. In the AdS=CFT
correspondence this vertex is supposed to be a dynamic
object. It is a five brane wrapped on an internal space X
[18], and correspondingly the antibaryon vertex is an
antibrane. Both objects look pointlike in five dimensions.
In [17] it was observed that the action for the baryon vertex,
written in the static gauge,

Svert ¼ τv

Z
dt

e−2sr
2

r
ð2:3Þ

yields very satisfactory results, when compared to the
lattice calculations of the three-quark potential. Notice
that Svert is given by the world volume of the brane if
τv ¼ T 5R volðXÞ, with T 5 a brane tension. Unlike
AdS=CFT, we treat τv as a free parameter to somehow
account for α0 corrections as well as possible impact of the
other background fields.6 In the case of zero baryon
chemical potential, it is natural to take the action (2.3)
also for the antibaryon vertex so that S ¯vert ¼ Svert.
Finally, following [19], we introduce a background

scalar field TðrÞ which describes two light quarks of equal
mass. In the present context those are at string endpoints in
the interior of five-dimensional space. The scalar field
couples to the world sheet boundary as an open string

tachyon Sq ¼
R
dτeT, where τ is a coordinate on the

boundary and e is a boundary metric.7 In what follows,
we consider only a constant field T0 and world sheets
whose boundaries are straight lines in the t direction. In that
case, the action written in the static gauge is simply

Sq ¼ T0R
Z

dt
e
1
2
sr2

r
: ð2:4Þ

One can immediately recognize it as the action of a point
particle of mass T0 at rest.

8 Clearly, at zero baryon chemical
potential the same action also describes the light anti-
quarks, and hence Sq̄ ¼ Sq.
It is worth noting a visual analogy between tree level

Feynman diagrams and static string configurations. In the
language of Feynman diagrams the above building blocks
play respectively the roles of propagators, vertices, and
tadpoles.

III. THE QQqqq̄-QUARK SYSTEM: STRING
THEORY ANALYSIS IN FIVE DIMENSIONS

We will now describe the QQqqq̄ system. Our basic
approach is as follows. Following the hadroquarkonium

FIG. 3. String configurations with one virtual pair.

FIG. 4. Some string interactions: (a) reconnection (rearrangement); (b) breaking; (b’) double breaking; (c) junction annihilation.

6Like in AdS=CFT, one expects an analog of the Ramond-
Ramond fields on X.

7The use of the term tachyon also seems particularly appro-
priate in virtue of instability of a QCD string.

8For the parameter values used in this paper, the masses of the
light quarks can be found by fitting the string breaking distance
for the QQ̄ system to the lattice data of [20]. This leads to the
result mu=d ¼ 46.6 MeV [21].
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picture [22], we think of the light quarks/antiquarks as
clouds. Therefore, it only makes sense to speak about the
average positions of those or, equivalently, the centers of
the clouds. The heavy quarks are pointlike objects inside
the clouds. Our goal is to determine the low-lying B-O
potentials as a function of separation between the heavy
quarks.
We start our discussion with the basic string configura-

tions, then continue with the remaining ones, and finally end
up with the potentials. A simple intuitive way to see how a
configuration looks like in five dimensions is to place it on
the boundary of five-dimensional space.Agravitational force
pulls the light quarks and strings into the interior, whereas the
heavy (static) quarks remain at rest. Mostly this helps, but
some exceptions exist. We will see shortly that the shape of
several configurations changes with the heavy quark sepa-
ration that makes the problem more complicated.

A. The disconnected configurations (a) and (b)

First consider configuration (a). It can be interpreted as a
pair of noninteracting hadrons: a doubly heavy baryon and
a pion. Clearly, the total energy is just the sum of the rest
energies of the baryon and pion if they are infinitely far
apart. It is quite surprising that such a factorization also
holds at finite separation if one takes the average over the
pion (cloud) position [23]. In what follows, we consider the
configurations with pions only in the sense of averaging
over all possible pion positions.
In five dimensions, the configuration looks like that

shown in Fig. 5(a). It consists of two parts. The lower part
corresponds to the QQq system and the upper to the pion.
The total energy is the sum of the energies of each part

EðaÞ ¼ EQQq þ Eqq̄: ð3:1Þ

In the static limit, EQQq was computed in [8]. For
convenience, we include a brief description of the results
in Appendix B. Eqq̄ was computed in [10] with the result

Eqq̄ ¼ 2n
ffiffiffiffiffiffi
gσ

p
; σ ¼ egs: ð3:2Þ

Here g ¼ R2

2πα0, n ¼ T0R
g , and σ is the string tension obtained

in [15] from the study of the QQ̄ system at large pair
separation.
Now let us consider configuration (b). Again, the total

energy is just the sum of the rest energies. So,

EðbÞ ¼ EQq̄ þ EQqq: ð3:3Þ

The first term is the rest energy of a heavy-light meson. In
[14] it was shown that it can be written as

EQq̄ ¼ g
ffiffiffi
s

p �
QðqÞ þ n

e
1
2
qffiffiffi
q

p
�
þ c; ð3:4Þ

where the function Q is defined in Appendix A and c is a
normalization constant. q is a solution to the equation

e
q
2 þ nðq − 1Þ ¼ 0 ð3:5Þ

in the interval [0, 1]. Here q ¼ sr2q. This equation is
nothing else but the force balance equation in the
r-direction. It is derived by varying the action S ¼
SNG þ Sq with respect to rq.
The second term represents the rest energy of a

heavy-light baryon. It was also computed in [14]. In this
case, one has

EQqq ¼ g
ffiffiffi
s

p �
2QðqÞ −QðvÞ þ 2n

e
1
2
qffiffiffi
q

p þ 3k
e−2vffiffiffi
v

p
�
þ c;

ð3:6Þ

with v a solution to the equation

1þ 3kð1þ 4vÞe−3v ¼ 0 ð3:7Þ

FIG. 5. Configurations (a) and (b) in five dimensions. The heavy quarks are placed on the boundary at r ¼ 0 and separated by distance
l. The light quarks, baryon vertices and pion are at r ¼ rq, r ¼ rv, and r ¼ r2q, respectively. Generically, the shape of configuration
(a) changes with l. Sketched here is the configuration for intermediate separations (see Fig. 19).
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in the interval [0, 1]. Here k ¼ τv
3g and v ¼ sr2v. The above

equation is the force balance equation in the r-direction at
r ¼ rv. It is derived by varying the action S ¼ 3SNG þ
2Sq þ Svert with respect to rv.
We conclude our discussion of the basic configurations

with some remarks. First, in [8] it was shown that in the
interval [0, 1] Eq. (3.7) has solutions if and only if k is
restricted to the range − e3

15
< k ≤ − 1

4
e
1
4. In particular, there

exists a single solution v ¼ 1
12

at k ¼ − 1
4
e
1
4. Second, the

analysis of configuration (b) assumes that v ≤ q. Although
this is not true for all possible parameter values, it definitely
is for those we use to make predictions. Finally, the
solutions q and v describe the light quarks and baryon
vertices and, as a consequence, are independent of the
heavy quark separation.

B. The connected configuration (c)

Now let us discuss the pentaquark configuration (c) in
five dimensions. In doing so, it is natural to suggest that if a
configuration contributes to the ground state, or at least to
the first excited state, its shape is dictated by symmetry. For
the configuration at hand, there are the two most symmetric
cases: 1. All the light quarks are in the middle between the
heavy quarks. 2. The light quarks sit on top of each heavy
quark and the antiquark is in the middle.9 We will see that
the former takes place at small enough separations between
the heavy quarks, whereas the latter at larger separa-
tions, l≳ 0.1 fm.

1. Small l

For small separations, the corresponding string configu-
ration is depicted in Fig. 6.10 It is obtained by placing the
standard configuration of Fig. 2(c) on the boundary of five-
dimensional space. The light quarks are indeed in the
middle between the heavy ones. Here rq, rv, and rv̄ are
assumed to satisfy the following condition: rq > rv̄ > rv.

11

The total action is the sum of the Nambu-Goto actions
plus the actions for the vertices and light quarks

S ¼
X6
i¼1

SðiÞNG þ 3Svert þ 3Sq: ð3:8Þ

We pick the static gauge ξ1 ¼ t and ξ2 ¼ r for the Nambu-
Goto actions and consider the xðiÞ’s as a function of r. Then
the boundary conditions take the form

xð1;2Þð0Þ ¼ ∓ 1

2
l;

xð1;2;6ÞðrvÞ ¼ xð3;4;5;6Þðrv̄Þ ¼ xð3;4;5ÞðrqÞ ¼ 0; ð3:9Þ
and the action becomes12

S ¼ gT
�
2

Z
rv

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rv̄

rv

dr
r2

esr
2

þ 3

Z
rq

rv̄

dr
r2

esr
2 þ 3k

e−2sr
2
v

rv
þ 6k

e−2sr
2
v̄

rv̄
þ 3n

e
1
2
sr2q

rq

�
;

ð3:10Þ

where ∂rx ¼ ∂x
∂r and xð3;4;5;6Þ ¼ const. The integrals re-

present the contributions of the strings, and the remaining
terms the contributions of the vertices and light quarks.
To find a stable configuration, one has to extremize the

action with respect to xðrÞ describing the profiles of strings
(1) and (2), and, in addition, with respect to rv, rv̄, and rq
describing the locations of the vertices and light quarks. As
explained in Appendix B of [21], varying with respect to
xð1Þ results in the following expression for the separation
distance and the energy of the configuration:

l ¼ 2ffiffiffi
s

p Lþðα; vÞ; ð3:11Þ

EðcÞ ¼ S
T
¼ EQQqqq̄ ¼ g

ffiffiffi
s

p �
2Eþðα; vÞ þ 3QðqÞ − 2Qðv̄Þ

−QðvÞ þ 3k
e−2vffiffiffi
v

p þ 6k
e−2v̄ffiffiffī
v

p þ 3n
e
1
2
qffiffiffi
q

p
�
þ 2c:

ð3:12Þ

FIG. 6. The pentaquark configuration (c) for very small l.
The light quarks and baryon vertices are placed on the r-axis.
Here and later, α indicates the tangent angle at the endpoint
of string (1).

9This is in fact the antiquark-diquark-diquark scheme of [24].
10We are jumping ahead slightly, as we have not discussed

the configuration with VV̄ spatially split apart. In that case, one
has to extremize the total action with respect to both vertex
positions. A technical analysis goes along the same lines as
those for Qqq in [14] and leads to the configuration of Fig. 6.

11As we will see shortly, it holds for the parameter values we
use in this work. 12We drop the subscript (i) when it does not cause confusion.
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We have also used the fact that
R
b
a

dx
x2 e

cx2 ¼ ffiffiffi
c

p ðQðcb2Þ−
Qðca2ÞÞ. Here v ¼ sr2v, v̄ ¼ sr2v̄, and the functions L

þ and
Eþ are defined in Appendix A.
It is easy to see that varying the action with respect to rq

and rv̄ leads to Eqs. (3.5) and (3.7) (with v replaced by v̄).
On the other hand, varying with respect to rv leads to

sin α ¼ 1

2
ð1þ 3kð1þ 4vÞe−3vÞ: ð3:13Þ

All these equations are nothing else but the force balance
equations in the r-direction.
Combining Eqs. (3.12) and (3.13) with Eq. (B2), we can

write the energy as

EQQqqq̄ ¼EQQqþ 2g
ffiffiffi
s

p �
QðqÞ−QðvÞþ 3k

e−2vffiffiffi
v

p þn
e
1
2
qffiffiffi
q

p
�
:

ð3:14Þ
Here EQQq is the energy of the configuration shown in
Fig. 19(s). q and v are solutions respectively to Eqs. (3.5) and
(3.7) in the interval [0, 1]. In four dimensions, this formula
assumes a structure likeQQðqqq̄Þwith a color-triplet ðqqq̄Þ.
Thus, the energy of the configuration is given in para-

metric form by EQQqqq̄ ¼ EQQqqq̄ðvÞ and l ¼ lðvÞ. The
parameter takes values in the interval ½0; v�.

2. Larger l

A simple numerical analysis shows that l is an increas-
ing function of v vanishing at the origin.13 Therefore, at
some separation between the heavy quarks the baryon
vertex reaches the point r ¼ rv̄ where it meets the other
vertices, as shown in Fig. 7(a).14 This defines the upper

bound on the range of v in (3.11) and (3.12). We can
continue with a VV̄V object until we approach infinite
separation. Why do we need to be concerned with such a
configuration? The reason is that from the string theory
perspective it is natural to expect that the brane-antibrane
annihilation or, in other words, the string junction annihi-
lation occurs if the positions of the vertices coincide or
close enough to each other. This could lead to instability.
However, there is a natural way out of it: employing another
configuration in which the vertices are spatially separated,
as depicted in Fig. 8.15

This configuration is governed by the action

S ¼
X7
i¼1

SðiÞNG þ 3Svert þ 3Sq: ð3:15Þ

In the static gauge the boundary conditions are

xð1;2Þð0Þ ¼ ∓l
2
; xð1;3;6;2;5;7ÞðrvÞ ¼ xðrqÞð3;5Þ ¼ ∓xv;

xð4;6;7ÞðrvÞ ¼ xð4ÞðrqÞ ¼ 0; ð3:16Þ

and the action reads

S ¼ gT
�Z

rv

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rq

rv

dr
r2

esr
2

þ
Z

rv̄

rv

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ 3k

e−2sr
2
v

rv
þ n

e
1
2
sr2q

rq

�

þ ðx → −xÞ þ gT
�Z

rq

rv̄

dr
r2

esr
2 þ 3k

e−2sr
2
v̄

rv̄
þ n

e
1
2
sr2q

rq

�
:

ð3:17Þ

FIG. 7. Some other pentaquark configurations.

13This is indeed the case for the parameter values we use.
14For l < lðvÞ, this configuration has higher energy than the

configuration of Fig. 6. Its four-dimensional counterpart is
sketched in Fig. 2(c’).

15Another reason is that it is most symmetric. For comparison,
see the configuration shown in Fig. 7(b), which does not have
reflection symmetry.
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Here we set xð3;4Þ ¼ const. Because of the reflection
symmetry of the configuration, only the x < 0 part of
the action is written explicitly in the first line of (3.17). The
integrals correspond respectively to the contributions of
strings (1), (3), and (6). The second line represents the
x ¼ 0 part of the action.

Given the action (3.17), it is straightforward to extremize
it with respect to the xðrÞ’s describing the profiles of strings
and with respect to xv, rv, rv̄, and rq describing the
locations of the baryon vertices and light quarks. We begin
with xv and rv. In this case, the result can be conveniently
written in a vector form as

e1 þ e3 þ e6 þ fv ¼ 0; ð3:18Þ

where e1 ¼ gwðrvÞð− cos α;− sin αÞ, e3 ¼ gwðrvÞð0; 1Þ,
e6 ¼ gwðrvÞðcos α6; sin α6Þ, and fv ¼ ð0;−3gk∂rv e−2sr

2
v

rv
Þ,

with αi ≤ π
2
. This is the force balance equation at the

position of the baryon vertex (see Fig. 8). Its x-component
reduces simply to

cos α − cos α6 ¼ 0: ð3:19Þ

The equation has a trivial solution α6 ¼ α. “Trivial” means
that in this case the strings (1) and (6) are smoothly glued
together to form a single string. The vertex in turn does not
affect the string.16If so, then the r-component becomes
equivalent to Eq. (3.7). As a result, a significant simpli-
fication of the expression (3.17) is achieved. Now it takes
the form

S ¼ gT
�
2

Z
rv̄

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rq

rv̄

dr
r2

esr
2

þ 2

Z
rq

rv

dr
r2

esr
2 þ 6k

e−2sr
2
v

rv
þ 3k

e−2sr
2
v̄

rv̄
þ 3n

e
1
2
sr2q

rq

�
:

ð3:20Þ

Varying the action with respect to rq and rv̄ results in
Eqs. (3.5) and (3.13), with v replaced by v̄. The same
reasoning that led to (3.11) gives

l ¼ 2ffiffiffi
s

p Lþðα; v̄Þ: ð3:21Þ

Similarly the obvious analog of Eq. (3.12) holds for the
energy

EQQqqq̄ ¼ g
ffiffiffi
s

p �
2Eþðα; v̄Þ þ 3QðqÞ − 2QðvÞ −Qðv̄Þ

þ 6k
e−2vffiffiffi
v

p þ 3k
e−2v̄ffiffiffī
v

p þ 3n
e
1
2
qffiffiffi
q

p
�
þ 2c: ð3:22Þ

Given this, we learn by using (B2) that the same formula as
in (3.14) is also valid in the interval [v, q]. An important
point is that now it assumes an antiquark-diquark-diquark
q̄½Qq�½Qq� structure. The reason for the upper bound is that
the antibaryon vertex goes up as the separation between the
heavy quarks is increased. This continues until it reaches
the light quark whose position is independent of the
separation. So, the string configuration becomes that shown
in Fig. 9(m).
Again, a short numerical calculation shows that l

reaches its maximum value at v ¼ q but remains finite.
Because of this, for larger separations one needs to analyze
the configuration of Fig. 9(m). By essentially the same
arguments that we have given for the configuration of
Fig. 8, the strings (1) and (2), which are stretched between
the heavy quarks and antibaryon vertex, are smooth. In that
case, the action can be obtained from (3.20) by simply
dropping the contribution of string (4) out. So,

S ¼ gT
�
2

Z
rv̄

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ 2

Z
rq

rv

dr
r2

esr
2

þ 6k
e−2sr

2
v

rv
þ 3k

e−2sr
2
v̄

rv̄
þ 2n

e
1
2
sr2q

rq
þ n

e
1
2
sr2v̄

rv̄

�
: ð3:23Þ

As before, varying the action with respect to rq leads to
Eq. (3.5) and with respect to rv to Eq. (3.7). But when one
varies it with rv̄, the resulting formula can be written as

sin α ¼ 1

2

�
nð1 − v̄Þe−1

2
v̄ þ 3kð1þ 4v̄Þe−3v̄

�
: ð3:24Þ

FIG. 8. The pentaquark configuration (c) for small l [but larger
than lðvÞ�. It is labeled by (s), like the corresponding configu-
ration for the QQq-system (see Fig. 19). The forces exerted on
the baryon vertex are depicted by the arrows. α6 is the tangent
angle at the endpoint of string (6).

16In fact, this is true only for v ¼ v.
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Since α is non-negative by construction, this places an
upper bound on v̄. It is defined by the equation α ¼ 0, or
equivalently, by

nð1 − v̄Þ þ 3kð1þ 4v̄Þe−5
2
v̄ ¼ 0: ð3:25Þ

We denote the solution of this equation in the interval [0, 1]
as v0.
Clearly, Eq. (3.21) holds for the heavy quark separation.

It follows then from (3.23) that the energy of the configu-
ration is

EQQqqq̄ ¼ g
ffiffiffi
s

p �
2Eþðα; v̄Þ þ 2QðqÞ − 2QðvÞ þ 6k

e−2vffiffiffi
v

p

þ 3k
e−2v̄ffiffiffī
v

p þ 2n
e
1
2
qffiffiffi
q

p þ n
e
1
2
v̄ffiffiffī
v

p
�
þ 2c: ð3:26Þ

It is straightforward now, using the formula (B3), to see that
the relation between EQQqqq̄ and EQQq is valid in the
interval ½q; v0�.
Since lðv0Þ is finite, the question arises of whether larger

separations can be reached. The short answer to this
question is yes, they can. For this, one needs to consider
a change of the sign of α. If so, then the configuration
profile becomes convex near x ¼ 0, as depicted in Fig. 9(l).
For some α the strings reach the soft wall that corresponds
to infinite separation between the heavy quarks.
The configuration is governed by the same action as

before. The expressions for the separation distance and
energy are simply obtained by respectively replacing Lþ

and Eþ with L− and E−, as follows from the analysis in
Appendix B of [21]. So, we have

l ¼ 2ffiffiffi
s

p L−ðλ; v̄Þ ð3:27Þ

and

EQQqqq̄ ¼ g
ffiffiffi
s

p �
2E−ðλ; v̄Þ þ 2QðqÞ − 2QðvÞ þ 6k

e−2vffiffiffi
v

p

þ 3k
e−2v̄ffiffiffī
v

p þ 2n
e
1
2
qffiffiffi
q

p þ n
e
1
2
v̄ffiffiffī
v

p
�
þ 2c: ð3:28Þ

The functions L− and E− are given in Appendix A. The
dimensionless variable λ is defined by λ ¼ sr20, with r0 ¼
max rðxÞ as shown in Fig. 9(l). Importantly, λ can be
expressed in terms of v̄ as [8]

λ ¼ −ProductLog
�
−v̄e−v̄

�
1 −

1

4
ð3kð1þ 4v̄Þe−3v̄

þ nð1 − v̄Þe−1
2
v̄Þ2

�
−1
2

�
: ð3:29Þ

Here ProductLogðzÞ is the principal solution for w in
z ¼ wew [25].
The parameter v̄ now varies from v0 to v1. The upper

bound is found by solving the equation λ ¼ 1, or equiv-
alently the equation

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̄2e2ð1−v̄Þ

p
þ 3kð1þ 4v̄Þe−3v̄ þ nð1 − v̄Þe−1

2
v̄ ¼ 0;

ð3:30Þ

in the interval [0, 1]. The reasoning for this is that since
L−ðλ; v̄Þ is singular at λ ¼ 1, v1 corresponds to infinite
separation between the heavy quarks.
We conclude the discussion of configuration (c) with a

brief summary of our analysis. First, EQQqqq̄ is a piecewise
function of l. The different parts of its domain are
described by the different string configurations. Second,
for l > lðvÞ our model provides an explicit realization of
the antiquark-diquark-diquark scheme of the pentaquark
[24]. In that case the formula (3.14) establishes the relation

FIG. 9. Static configurations for intermediate (m) and large (l) separations. The gray horizontal line in (l) represents the soft wall at
r ¼ 1=

ffiffiffi
s

p
. For string (1) a turning point is located at ðx0; r0Þ.

OLEG ANDREEV PHYS. REV. D 107, 026023 (2023)

026023-8



between the energies of a compact pentaquark and a doubly
heavy baryon in the heavy quark limit.

3. The limiting cases

It is instructive to examine an asymptotic behavior of
EQQqqq̄ for small and large l. These are easy to understand
because the relation (3.14) between EQQqqq̄ and EQQq is
valid for all separations.
The behavior for small l can be read off from Eq. (B5).

We get exactly what we expect from heavy quark-diquark
symmetry [26], namely

EQQqqq̄ðlÞ ¼ EQQðlÞ þ EQ̄qqq̄: ð3:31Þ

Here EQQ is the heavy quark-quark potential (in the
antitriplet channel) and EQ̄qqq̄ is the rest energy of a
heavy-light tetraquark. At zero baryon chemical potential
EQ̄qqq̄ ¼ EQqq̄ q̄, where

EQqq̄ q̄ ¼ 3g
ffiffiffi
s

p �
QðqÞ − 2

3
QðvÞ þ 2k

e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p
�
þ c;

ð3:32Þ

as described in [9].
Similarly, the behavior for large l can be read off from

Eq. (B7). So, we have

EQQqqq̄ ¼ σlþ 2g
ffiffiffi
s

p �
QðqÞ −QðvÞ þ 3k

e−2vffiffiffi
v

p

þ n
e
1
2
qffiffiffi
q

p − IQQq

�
þ 2cþ oð1Þ: ð3:33Þ

Here σ is the same string tension as in (3.2).

4. Gluing the pieces together

Now let us discuss the gluing of all the branches of
EQQqqq̄ðlÞ. For this, we need to specify the model param-
eters. Here we use one of the two parameter sets suggested
in [14] which is mainly a result of fitting the lattice QCD
data to the string model we are considering. The value of s
is fixed from the slope of the Regge trajectory of ρðnÞ
mesons in the soft wall model with the geometry (2.1), and
as a result, one gets s ¼ 0.45 GeV2 [27]. Then, fitting the
value of the string tension σ defined in (3.2) to its value in
[20] gives g ¼ 0.176. The parameter n is adjusted to
reproduce the lattice result for the string breaking distance
in the QQ̄ system. With lQQ̄ ¼ 1.22 fm for the u and d
quarks [20], one gets n ¼ 3.057 [14].
In principle, the value of k could be adjusted to fit the

lattice data for the three-quark potential, as done in [17]
for pure SUð3Þ gauge theory, but there are no lattice
data available for QCD with two light quarks. There are

still two special options: k ¼ −0.102 motivated by phe-
nomenology17 and k ¼ −0.087 obtained from the lattice
data for pure gauge theory [17]. However, both are out of
the range of allowed values for k as follows from the
analysis of Eq. (3.7). In this situation it is reasonable to pick
k ¼ − 1

4
e
1
4, as the closest to those.

Having fixed the model parameters, we can immediately
perform some simple but important calculations. First let us
check that q > v. That is, our construction of the string
configurations makes sense. From Eqs. (3.5) and (3.7), we
find that q ¼ 0.566 and v ¼ 1

12
, as desired. In addition, from

(3.25) and (3.30), we get v0 ¼ 0.829 and v1 ¼ 0.930.
Second, with this value of v, we can immediately calculate
the smallest separation between the heavy quarks for the
configuration shown in Fig. 8. So, lðvÞ ¼ 0.106 fm. It is
quite surprising that the antiquark-diquark-diquark scheme
of [24] arises at such small separations.
It is now straightforward to plot EQQqqq̄ as a function of

l. The result is shown in Fig. 10. From this figure it is seen
that all the pieces of the function are smoothly glued
together. Moreover, EQQqqq̄ðlÞ is with good approximation
linear for separations larger than 0.4 fm.

C. The disconnected configurations (d)–(f)
We start with configuration (d). It is obtained from

configuration (a) by adding a qq̄ pair (pion). So, by analogy
with Fig. 5(a), we place the pion at r ¼ r2q. The resulting
configuration is shown schematically in Fig. 11(d).
Although there are no calculations on the lattice for two
pions, we will assume that adding another pion and
averaging over its position, leads to an energy increase
by Eqq̄. If so, then the energy is

FIG. 10. EQQqqq̄ vs l. The dashed curve corresponds to the
configuration of Fig. 6, whereas the solid curve to the configu-
rations of Figs. 8 and 9 for which the antiquark-diquark-diquark
scheme holds. Here and later, c ¼ 0.623 GeV.

17Note that k ¼ −0.102 is a solution to the equation αQQðkÞ ¼
1
2
αQQ̄ which follows from the phenomenological rule EQQðlÞ ¼

1
2
EQQ̄ðlÞ in the limit l → 0.
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EðdÞ ¼ EQQq þ 2Eqq̄; ð3:34Þ

with EQQq described in Appendix B and Eqq̄ given by (3.2).
In a similar way, configuration (e) is obtained from

configuration (b). It is as shown in Fig. 11(e). By the same
assumption that we have made previously in our treatment
of configuration (d), the energy is given by

EðeÞ ¼ EQq̄ þ EQqq þ Eqq̄; ð3:35Þ

where the rest energies were defined in Eqs. (3.2), (3.4),
and (3.6).
From the five-dimensional perspective, configuration

(f) looks like that shown in Fig. 11(f). It consists of the
two heavy-light mesons which we have discussed above
and a three-quark state (nucleon). Such a state requires
some explanation. In the static limit it is natural to guess, by
analogy with the case of qq̄, that all the strings connecting
the quarks collapse into a point as shown in the figure.18 If
so, then the corresponding action is just the sum of the
actions of the vertex and light quarks. Explicitly,

S ¼ 3
gT
r3q

ðke−2sr23q þ ne
1
2
sr2

3qÞ: ð3:36Þ

The force balance equation obtained by varying r3q in
(3.36) is

kð1þ 4q3Þ þ nð1 − q3Þe52q3 ¼ 0: ð3:37Þ

Here q3 ¼ sr23q. The nucleon rest energy is thus

Eqqq ¼ 3g
ffiffiffiffiffi
s
q3

r
ðke−2q3 þ ne

1
2
q3Þ; ð3:38Þ

where q3 is a solution to Eq. (3.37) in the interval [0, 1].19

This configuration can be interpreted as a pair of mesons
in a nucleon cloud. Like in the case of configuration (e), we
assume averaging over a nucleon position and therefore
expect that

EðfÞ ¼ 2EQq̄ þ Eqqq; ð3:39Þ
with EQq̄ given by Eq. (3.4).

D. What we have learned

It is instructive to see concretely how the energies of
the configurations depend on the separation between the
heavy quarks and which configurations contribute to the
two low-lying B-O potentials. In Fig. 12 we plot the E’s
for our parameter values. These show that the energies of
the ground and first excited states are determined only by
the contributions from configurations (a)–(c) and (f).
In other words, V0 ¼ minfEQQq þ Eqq̄; EQq̄ þ EQqqg and
V1 ¼minfEQQqqq̄;EQq̄ þEQqq;EQQq þEqq̄;2EQq̄ þEqqqg.20
The essential feature of the pattern of Fig. 12 is the

emergence of three length scales which separate different
configurations, or in other words different descriptions.
This enables us to better understand how the quarks are
organized inside the QQqqq̄ system.
The first is a scale which refers to the process of string

reconnection. It goes like this: QQqþ qq̄ → QqqþQq̄
for V0 and vice versa for V1, if l is increased. In the case of
V0 the physical meaning of this scale is that the system can
be though of as a doubly heavy baryon in a pion cloud for
smaller quark separations and, respectively, as a pair of
heavy-light hadrons for larger ones. To make this more
quantitative, we define a critical separation distance lQq by

FIG. 11. Configurations (d), (e), and (f) in five dimensions. The heavy quarks in (d) are placed at an intermediate separation distance
(see Fig. 19).

18This still leaves another choice in which the strings don’t
collapse, but get stretched along the r-axis so that the quarks and
vertex are spatially separated. The problem with such a configu-
ration is that it is unstable at k ¼ − 1

4
e
1
4.

19Numerically, q3 ¼ 0.953 at k ¼ − 1
4
e
1
4 and n ¼ 3.057.

20Note that in these formulas, one has first to take a minimum
to get V0 and then, with that in mind, V1.
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EQQqðlQqÞ þ Eqq̄ ¼ EQqq þ EQq̄: ð3:40Þ

If reconnection occurs at small l (as in Fig. 12), then by using (B5) together with (3.2), (3.4), and (3.6), we get

lQq ¼
g

ffiffiffi
s

p
σQQ

�
QðqÞ − 1

2
QðvÞ þ n

e
1
2
qffiffiffi
q

p − n
ffiffiffi
e

p þ 3

2
k
e−2vffiffiffi
v

p
�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQQ
σQQ

þ g2s
σ2QQ

�
QðqÞ − 1

2
QðvÞ þ n

e
1
2
qffiffiffi
q

p − n
ffiffiffi
e

p þ 3

2
k
e−2vffiffiffi
v

p
�

2

s
:

ð3:41Þ

For our parameter values, lQq ≈ 0.203 fm. This value is
rather close to the value of 0.219 fm obtained for lQq in the
QQ̄qq̄ system [10].
The second scale is related to the process of string

junction annihilation which occurs at the level of the
first excited state. More specifically, it goes like this:
QQqqq̄ → Qq̄þQqq, if l is increased. In this case we
define a critical separation distance by

EQQqqq̄ðlQQqqq̄Þ ¼ EQq̄ þ EQqq: ð3:42Þ

It implies that at the first excited level the system can be
thought of mainly as a compact pentaquark if l ≤ lQQqqq̄.
As seen from Fig. 12, lQQqqq̄ is of order 0.2 fm. For this
range of l values, the function EQQqqq̄ðlÞ is well-approxi-
mated by Eq. (3.31). Then a simple calculation shows that

lQQqqq̄ ¼
g

ffiffiffi
s

p
2σQQ

�
QðvÞ − 3k

e−2vffiffiffi
v

p
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQQ
σQQ

þ g2s
4σ2QQ

�
QðvÞ − 3k

e−2vffiffiffi
v

p
�

2
s

; ð3:43Þ

where in the last step we used (3.4) and (3.6). One
important point is that lQQqqq̄ is finite and scheme
independent (c drops out). The other point is that it depends

on v, which describes the position of the baryon vertices in
the bulk, rather than on q which describes the position of
the light quarks. This suggests that lQQqqq̄ is related to
gluonic degrees of freedom, as expected from annihilation
of string junctions made of gluons. A simple calculation
shows that

lQQqqq̄ ≈ 0.184 fm: ð3:44Þ

This value is equal to the value obtained for the QQq̄ q̄
system in [9] and only slightly below the value lQQ̄qq̄ ≈
0.196 fm for the QQ̄qq̄ system [10]. Thus, our estimate
provides further evidence that in systems with two heavy
quark sources the process of string junction annihilation
takes place at relatively small heavy quark separations, of
order 0.2 fm. Of course the question arises of whether this
scale is universal. We will return to this question in Sec. V
after gaining some information about the screening lengths.
The third scale is associated to the transition: QQqþ

qq̄ → 2Qq̄þ qqq which also occurs at the level of the
first excited state. Such a transition can be subdivided into
two elementary ones, as those of Fig. 4. The first is the
process of string reconnection, QQqþ qq̄ → QqqþQq̄,
and the second is the process of string breaking Qqqþ
Qq̄ → 2Qq̄þ qqq. The corresponding equation for a
critical distance reads

EQQqðlðqq̄Þ
QQqÞ þ Eqq̄ ¼ 2EQq̄ þ Eqqq: ð3:45Þ

Since this scale is large enough, as seen in Fig. 12, the
solution can be found just by using the asymptotic
expansion (B7). So,

lðqq̄Þ
QQq ¼

2

e
ffiffiffi
s

p
�
QðqÞ þ n

�
e
1
2
qffiffiffi
q

p − e
1
2

�

þ 3

2
ffiffiffiffiffi
q3

p ðke−2q3 þ ne
1
2
q3Þ þ IQQq

�
; ð3:46Þ

where we have used Eqs. (3.2), (3.4), and (3.38). A

numerical calculation shows that lðqq̄Þ
QQq ≈ 1.22 fm. This

value is surprisingly close to that found for the string
breaking distance in the QQ̄ system [20].

FIG. 12. Various E vs l plots. The curves relevant for V0 and
V1 are depicted in solid black.
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IV. MORE DETAIL ON THE POTENTIALS

A. An issue with Eqq̄ and Eqqq

With the help of (3.2) and (3.38), it is straightforward
to estimate the rest energies of the pion and nucleon. Using
the parameter values of Sec. III, one finds that Eqq̄ ¼
1.190 GeV and Eqqq ¼ 1.769 GeV. These values are con-
siderably larger than the values of 280 MeVand 1060 MeV
used in the lattice calculations [20].21 The problem is that
the current model is not suitable for describing light
hadrons as it was originally developed for applications
in the heavy quark limit. In the context of string theory on
AdS-like geometries, this means that at least one quark is
needed to be placed on the boundary of five-dimensional
space.
A possible way out is to treat Eqq̄ and Eqqq as model

parameters. For Eqq̄ ¼ 280 MeV, the corresponding E’s are
plotted in Fig. 13. There are two main differences with
the plots of Fig. 12. First, the scale of lQq is now large,
about 1 fm. Second, configuration (e), rather than (f), is
relevant for determining the potential V1. So, V1 ¼
minfEQQqqq̄; EQq̄ þ EQqq; EQQq þ Eqq̄; EQq̄ þ EQqq þ Eqq̄g.
Note that there is no change in the behavior of EQQqqq̄ and
EQq̄ þ EQqq. Thus, the value of lQQqqq̄ remains the same
and the compact pentaquark is expected at the level of the
first excited state.
Since lQq is large, one can use the large l asymptotic

for EQQq to solve Eq. (3.40). With the help of (B7), one
finds that

lQq ¼
3

e
ffiffiffi
s

p
�
QðqÞ − 1

3
QðvÞ þ k

e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p

þ 2

3
IQQq −

Eqq̄

3g
ffiffiffi
s

p
�
: ð4:1Þ

For Eqq̄ ¼ 280 MeV, lQq ≈ 1.001 fm. Interestingly, this
value differs only by 3.7% from the value obtained within
the QQ̄qq̄ system [10], where the string reconnection
process is QQ̄þ qq̄ → Qq̄þ qQ̄.

Because of the relevance of configuration (e), the
third scale is now related to the process of string
breaking; QQqþ qq̄ → Qq̄þQqqþ qq̄, which obvi-
ously reduces to the process in the QQq system, namely
QQq → Qq̄þQqq. The corresponding scale is given by
(B11). Numerically, lQQq ¼ 1.257 fm [8].

Just like in the case of the QQ̄qq̄ system, our results
indicate that the following scale hierarchy is met

lQQqqq̄ < lQq < lQQq: ð4:2Þ

In other words, the scale of string junction annihilation is
the smallest and that of string breaking is the largest. One
may ask what happens at the physical value of the pion
mass. We expect that lQQqqq̄ remains the smallest so that
lQQqqq̄ < lQq, lQQq. Of course, this is not the whole answer
to this question, but it’s certainly an important piece of it.
Having understood the relevant configurations, one can

gain some insight into the two low-lying B-O potentials. A
natural way for doing so is to consider a model Hamiltonian
similar to that used in lattice QCD to study the phenomenon
of string breaking [11]. For the problem at hand it is

HðlÞ ¼

0
BBB@

EQQqðlÞ þ Eqq̄

EQq̄ þ EQqq Θij

Θij EQQqqq̄ðlÞ
EQq̄ þ EQqq þ Eqq̄

1
CCCA; ð4:3Þ

where the off-diagonal elements describe the strength of
mixing between the four states (string configurations). The
potentials of interest are the two smallest eigenvalues of the
matrix H.

Unlike lattice QCD, where the Hamiltonian could in
principle be extracted from a correlation matrix, it is not
clear how to compute the off-diagonal elements within
the string models. This makes it difficult to see pre-
cisely how the potentials look like. Nevertheless, we can
learn from our experience with the other quark systems
about the order of magnitude of the Θ’s near the

FIG. 13. Sketched here are the two low-lying B-O potentials of
the QQqqq̄ system. The dashed lines indicate the relevant E’s.

21This is a reasonable value of the nucleon mass in the case of
two flavors because Eqqq ¼ 1060 MeV at Eqq̄ ¼ 285 MeV [28].
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transition points.22 With the help of this, the picture will
then look more like what is shown in Fig. 13. The
compact pentaquark configuration contributes dominantly
to the potential V1 at heavy quark separations smaller
than 0.2 fm.

B. Simple approximations to V1

For practical purposes, the parametric expressions for the
potentials may look somewhat cumbersome. On the other
hand, a simple parametrization motivated by lattice calcu-
lations was proposed for the V0 potential of the QQq̄ q̄
system in [29]. From a string point of view the description
includes two distinct configurations, one associated with a
compact tetraquark and the other with a pair of non-
interacting mesons [9]. This is similar to what we have
seen above for V1. Indeed, at separations l≲ 0.6 fm, this
potential is determined in terms of the two string configu-
rations, one of which corresponds to the compact penta-
quark. The physical reason for this similarity is, in fact, the
underlying heavy quark-diquark symmetry.23

Thus, it is reasonable, following [29], to suggest that for
l≲ 0.6 fm

V1 ¼ −
α

l
exp

�
−
lp

dp

�
þ EQq̄ þ EQqq; ð4:4Þ

with parameters α, d, and p. To express these parameters in
terms of ours, we use the small l expansion (3.31) and
solve for the unknown coefficients. As a result, except for
the constant term, we get

α ¼ αQQ; d ¼
ffiffiffiffiffiffiffiffi
αQQ
σQQ

r
; p ¼ 2: ð4:5Þ

It is no coincidence that they are the same as those of the
QQq̄ q̄ [9] system. This is a consequence of heavy quark-
diquark symmetry. In particular, a numerical calculation
gives for the screening length d ≈ 0.200 fm.
For the given range of l, the model Hamiltonian is well

approximated by a 2 × 2 submatrix of H. Its diagonal
elements are given by EQQqqq̄ and EQq̄ þ EQqq, and an off-
diagonal element by ΘQQqqq̄. This leads to the following
expression for V1:

V1 ¼
1

2
ðEQQqqq̄ þ EQq̄ þ EQqqÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðEQQqqq̄ − EQq̄ − EQqqÞ2 þ Θ2

QQqqq̄

r
: ð4:6Þ

It is now interesting to compare it to the approximation
(4.4). Figure 14 shows the graphs for both cases. We set

ΘQQqqq̄ ¼ 47 MeVGeV to have a small deviation between
the curves.
There are two observations to be made here. The first is a

falloff at large l. It is power-law for (4.6), but exponential
for (4.4).24 The reason for the power-law falloff is the
choice of Θ ¼ const. In fact, one can get the exponential
falloff by taking Θ as a Gaussian function, but then one
additional parameter is required, a Gaussian width. The
second is a more visible deviation between the solid and
dashed curves in the interval 0.05 fm≲ l≲ 0.23 fm. The
appearance of this deviation can be ascribed to the mis-
match of the constant terms in the small l expansions of
(4.4) and (4.6). The point is that the constant term dictated
by quark-diquark symmetry for (4.4) is equal to cþ EQ̄qqq̄,
with c coming from the heavy quark-quark potential in
(B5). If so, then the improved approximation to V1 takes
the form

V1 ¼ −
αQQ
l

exp

�
−
σQQ
αQQ

l2

�
þ cþ EQ̄qqq̄: ð4:7Þ

As seen from the figure, now there is no visible deviation in
the above interval, but instead another deviation comes out
for larger l. This is so because of the difference between the
constant terms in (4.4) and (4.7).25

The lesson to learn from this example is that a con-
sistent parametrization should be based on a function
having different constant terms in its small and large l
expansions, as for example in (4.6). Hopefully, it will be
possible eventually to determine V1 reliably by computer
simulations.

FIG. 14. V1 vs l for l≲ 0.6 fm. The solid curve corresponds to
(4.6), whereas the dashed and dotted curves to the approxima-
tions (4.4) and (4.7).

22For example, one can take these Θ’s to be of order 47 MeV,
as in the case of the QQ̄ system [20].

23We return to this in Sec. V.

24The difference between these is slightly visible around
l ¼ 0.3 fm.

25Numerically, EQ̄qqq̄ þ c − EQq̄ − EQQq ≈ 41 MeV.
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C. Another view on the QQqqq̄ system

According to one of our assumptions made in Sec. II, the
string configurations corresponding to excited states are
constructed by adding qq̄ pairs to the basic configurations
corresponding to the ground state. This implies that the
QQqqq̄ system can be thought of as a subsystem of the
QQq system obtained by adding one pair.26 Here we briefly
explore such an idea using the results of the previous
section and Appendix B. This will also enable us to show
some of the subtleties of the QQq system and thereby
extend the analysis of Ref. [8].

We start with the ground state energy. As discussed in
Appendix B, from the string theory point of view, it is
described in terms of the configurations of Fig. 18 and
the corresponding potential is defined by V0 ¼ minfEQQq;
EQq̄ þ EQqqg. The transition between these two occurs
because of string breaking. The potential, which is the
same as in Fig. 20, is shown in Fig. 15 below.27

The energy of the first excited state is described in terms
of four configurations. These are the configurations of
Figs. 1, 3(e), and 18(a). So, we have V1 ¼ minfEQQq þ
Eqq̄; EQq̄ þ EQqq; EQQq; EQq̄ þ EQqq þ Eqq̄g. As seen from
the figure, for l≲ 1.15 fm the potential looks similar to
what is shown in Fig. 13 for the ground-state energy. Thus,
the transition at l ¼ 1.001 fm is due to string reconnection,
with the formula (4.1) remaining valid. For larger separa-
tions there is no similarity between them. The transition at
l ¼ 1.257 fm is now interpreted as a result of fusion of two
strings: Qq̄þQqq → QQq. This process is inverse to the

process of string breaking, which is discussed in
Appendix B. Because of this, the formula (B11) holds
true. The final transition near l ¼ 1.51 fm is an example
of double string breaking, QQq → Qq̄þQqqþ qq̄, as
sketched in Fig. 4(b’).28 By analogy with what we did
for the other transitions, we define a critical separation
distance by

EQQqðlð2Þ
QQqÞ ¼ EQq̄ þ EQqq þ Eqq̄: ð4:8Þ

For large l, this equation can be easily solved by using the
asymptotic expression (B7). The solution is given by

lð2Þ
QQq ¼

3

e
ffiffiffi
s

p
�
QðqÞ − 1

3
QðvÞ þ k

e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p

þ 2

3
IQQq þ

Eqq̄

3g
ffiffiffi
s

p
�
: ð4:9Þ

A simple calculation shows that for Eqq̄ ¼ 280 MeV,

lð2Þ
QQq ¼ 1.513 fm.
Before proceeding further, we pause here to briefly

discuss the process of double string breaking in the
QQq and QQ̄ systems. In the QQq system, we consider
a string attached to a heavy quark so that the critical
separation distance is given by (4.9). It is straightforward to
extend the above analysis to the QQ̄ system. First, one has
to consider the process:QQ̄ → Qq̄þ qQ̄þ qq̄, and then to
define a critical separation distance by

EQQ̄ðlð2Þ
QQ̄ Þ ¼ 2EQq̄ þ Eqq̄: ð4:10Þ

Using the large l expansion for EQQ̄ðlÞ of [14], one gets

lð2Þ
QQ̄ ¼ 2

e
ffiffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ I0 þ
Eqq̄

2g
ffiffiffi
s

p
�
: ð4:11Þ

Here I0 is defined in Appendix A. If, for instance,

Eqq̄ ¼ 280 MeV, then lð2Þ
QQ̄ ¼ 1.476 fm. This value is very

close (within 2.4%) to that obtained above for the QQq
system. Interestingly, a similar story also holds for the
standard string breaking (by one quark pair) distances,
where the difference is about 2.9% [8].
The energyof the second excited state is described in terms

of six configurations. These are shown in Figs. 1, 2, 3(e),
3(f), and 18(a). We therefore have V2 ¼ minfEQQqqq̄; EQq̄ þ
EQqq; EQQq þ Eqq̄; EQq̄ þ EQqq þ Eqq̄; EQQq; 2EQq̄ þ Eqqqg.

FIG. 15. Sketched here are the three low-lying B-O poten-
tials of the QQq system. Various E vs l plots are indicated
by dashed curves and horizontal lines. Here Eqq̄ ¼ 280 MeV
and Eqqq ¼ 1060 MeV.

26We did not adopt this viewpoint in Sec. III, in part because
it might have made the analysis more tedious.

27Like in Fig. 13, the resulting plots of the Vi’s require a
caveat. Here too, we are not aware precisely of any Θij.

28Another possibility could be that two different strings break
down. One of which is attached to a heavy quark, and the other to
a light quark. However, from the four-dimensional perspective
this does not seem possible because the light quark sits on top of a
string junction so that the corresponding string is shrunk into a
point.
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As for V1, a quite similar story holds true for V2. For l≲
1.35 fm it looks similar to what is shown in Fig. 13 for the
energy of the first excited state. So, the transition at l ¼
0.184 fm is due to the process of string junction annihilation,
with the formula (3.43) remaining valid. The next transition
at l ¼ 1.001 fm is interpreted as a result of string recon-
nection. In this case, the critical separation distance is given
by (4.1). The transition at l ¼ 1.257 fm is due to string
breaking, as discussed in Appendix B. The remaining
transition at l ¼ 1.513 fm can be interpreted as a result of
fusionof two strings;Qq̄þQqqþ qq̄ → QQq. Clearly, it is
inverse to the process of double string breaking so that the
above formula can also be applied to estimate the critical
separation distance.
So far we have considered the domain of V2, where the

analysis is straightforward and relies on the previous
results. However, for larger separations a new analysis is
needed. The transition near l ¼ 1.65 fm is another exam-
ple of double string breaking: QQq → 2Qq̄þ qqq. A
crucial difference from the first example is that two strings
break down. Both have a heavy quark at their endpoints.
For each of them, the process of string breaking is as
sketched in Fig. 4(b). In this case we define a critical
separation distance by

EQQqðlð20Þ
QQqÞ ¼ 2EQq̄ þ Eqqq: ð4:12Þ

As before, it is easy to find a solution for large l. It is

lð20Þ
QQq ¼

2

e
ffiffiffi
s

p
�
QðqÞ þ n

e
1
2
qffiffiffi
q

p þ IQQq þ
Eqqq

2g
ffiffiffi
s

p
�
: ð4:13Þ

For Eqqq ¼ 1060 MeV, a simple estimate gives lð20Þ
QQq ¼

1.661 fm that is smaller than the value of lð2Þ
QQq.

We conclude that in the QQq system the pentaquark
configuration makes the dominant contribution to the
potential of the second excited state at small separations.
This is quite similar to what happen in the QQqqq̄ system
to the potential of the first excited state.

V. CONCLUDING COMMENTS

(i) An interesting relation between the energies of some
connected configurations can be deduced from heavy
quark-diquark symmetry. Indeed, one can express EQQ

from Eq. (B5) and then substitute it into Eq. (3.31) to get

EQQqqq̄ðlÞ ¼ EQQqðlÞ þ EQqq̄ q̄ − EQq̄: ð5:1Þ

The above derivation holds for relatively small l. We have
developed all the necessary machinery to directly check if
this relation holds for larger values of l. To do so, it is
convenient to think in terms of the QQq system and to
further restrict discussion to the potentials of the ground

and second excited states. As seen from Fig. 15, V0 can be
well approximated by EQQq up to separations of order
1; 2 fm, while V2 by EQQqqq̄ up to separations of order
0.2 fm. The reason for the latter is the flattening of V2 near
l ¼ 0.2 fm due to string junction annihilation. For illus-
tration, in Fig. 16 we plot the potentials V2 and V0 shifted
by the constant EQqq̄ q̄ − EQq̄. Obviously, the refined version
of (5.1) is

V2ðlÞ ¼ V0ðlÞ þ EQqq̄ q̄ − EQq̄; if l≲ 0.2 fm: ð5:2Þ

It is tempting to apply this relation in the heavy quark
limit, where contributions from the motion of the heavy
quarks and spin interactions are negligible, to derive a
relation among the masses of heavy-light and doubly-
heavy-light hadrons. We will thus have

mQQqqq̄ −mQQq ¼ mQqq̄ q̄ −mQq̄: ð5:3Þ

It is important to realize, however, that because of the use of
(5.2), the doubly heavy hadrons are compact in sense of
heavy quark separation.
Similar formulas arise in the case of the QQq̄ q̄ system

[9]. Again, the phenomenon of string junction annihilation
plays a pivotal role in establishing the upper bound on l. In
the heavy quark limit one can use those to derive the
relation among the masses of heavy-light and doubly-
heavy-light mesons and baryons as that of [30]. Moreover,
by essentially the same arguments that we have given above
and in [9], one can show that similar relations hold between
the corresponding potentials of the QQqqq̄ and QQq̄ q̄
systems. In this case, the relation among masses reads29

FIG. 16. The potentials V0, shifted by EQqq̄ q̄ − EQq̄, and V2. The
part of V2 which is well approximated by EQQqqq̄ is shown in blue.

29Alternatively, it can be obtained by combining (5.3) with the
relation of [30].
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mQQqqq̄ −mQQq̄q̄ ¼ mQqq̄q̄ −mQqq: ð5:4Þ

It is interesting to see what results come out of both
relations and how those agree or disagree with phenom-
enological values. For reasons of brevity, we will not
discuss all this here, but only make a crude estimate.
Consider the first relation. For the mass of theQQqqq̄ state
several values can be found in the literature [31–33]. We
use these as an input to estimate the mass of Qqq̄ q̄ and
compare the output with the result of a direct calculation
in [34]. Our results are presented in Table I. The values
used here for the masses of QQq are the same as the
smallest values in [30], namely mccq ¼ 3.66 GeV and
mbbq ¼ 10.18 GeV. The masses of Qq̄ are those of the
D0 and B� mesons [35], mcq̄ ¼ 1.86 GeV and mbq̄ ¼
5.28 GeV. Since the ranges of values are quite wide, it is
not surprising that both values of [34] are inside those
ranges. While it is surprising that for cqq̄q̄ all the values do
not exceed 2.90 GeV, which is the mass of the X0ð2900Þ
state whose flavor content is uds̄c̄.
(ii) The assumptions made in Sec. II are oversimplified

for various reasons. For one thing, excited strings, as one
sketched in Fig. 17(a), must be included when building
string configurations for excited states. These strings
represent a kind of gluonic excitations of the system which
have been extensively studied in the literature, but only
within the QQ̄ system. Also, glueballs must be included.
They are another kind of gluonic excitations. The two
simplest examples are sketched in Figs. 17(b) and 17(b’).
The first is just a closed string, and the second involves a
pair of vertices connected by strings. Both kinds of gluonic
excitations are natural from the point of view of string
theory in four dimensions [12]. There is however a novelty
related to the description of the baryon vertex as a
five-brane in ten dimensions [18]. Accordingly, brane

excitations must be included. This would lead to a bunch
of excited vertices. One example of these is sketched in
Fig. 17(c), where excitation is due to an open string with
endpoints on the brane. One can think of this as a new kind
of gluonic excitations. It would be of great interest to find
evidence for this kind of excitations by means of lattice
simulations.
(iii) As we have seen, at small heavy quark separations

the pentaquark configuration makes the dominant contri-
bution to the first excited B-O potential of the QQqqq̄
system. This does not exclude the possibility of its
dominance at larger separations, but for higher excited
potentials. The key difference with the first case is that if
one thinks in terms of the heavy quark separation, the
pentaquarks are compact (small) in the first case but not in
the others.
(iv) An interesting observation, which one can make

from Eq. (3.43) and Eq. (3.42) in [9], is that in the QQqqq̄
and QQq̄ q̄ systems the critical separation distances char-
acterizing the process of string junction annihilation are
equal to each other. So,

lQQqqq̄ ¼ lQQq̄ q̄: ð5:5Þ

This is also true for the screening lengths, if one uses the
Gaussian form for the corresponding potentials [see
Eq. (4.5) and Eq. (4.5) in [9]]. At first glance, the reason
for this is that both systems possess heavy quark-diquark
symmetry. It is sufficient for guaranteeing the equal screen-
ing lengths, but not the equal critical separation distances.
There, one needs some peculiar relation among the rest
energies of heavy-light hadrons. So we are left with the two
important questions: (1) Is the critical separation distance l
universal for doubly heavy quark systems? (2) Why is it so
small? Hopefully, lattice QCD will be able to make further
progress in addressing these questions in the near future.
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FIG. 17. Some gluonic excitations.

TABLE I. Masses (in GeV) of QQqqq̄ and Qqq̄ q̄ states.

State [31] [32] [33] [34]

ccqqq̄ 4.21 4.54 4.70 � � �
bbqqq̄ 10.75 11.15 11.37 � � �
cqq̄q̄ 2.41 2.74 2.90 2.57
bqq̄q̄ 5.85 6.25 6.47 5.98

OLEG ANDREEV PHYS. REV. D 107, 026023 (2023)

026023-16



APPENDIX A: NOTATION

In all figures throughout the paper, heavy and light
quarks (antiquarks) are denoted byQ and qðq̄Þ, and baryon
(antibaryon) vertices by VðV̄Þ. Straight lines represent
nonexcited strings. Light quarks (antiquarks) are set at r ¼
rqðrq̄Þ and vertices at r ¼ rvðrv̄Þ, unless otherwise indi-
cated. It is convenient to introduce dimensionless variables:

q ¼ sr2q, q̄ ¼ sr2q̄, v ¼ sr2v, and v̄ ¼ sr2v̄. They take values
between 0 and 1, and show how far from the soft-wall these
objects are.30 To classify the critical separations related to
the string interactions of Fig. 4, the notation l is used for (a),
l for (b-b’), and l for (c).
To present the resulting formulas in a compact form, we

use the set of basic functions [21]:

Lþðα; xÞ ¼ cos α
ffiffiffi
x

p Z
1

0

du u2 exð1−u2Þ½1 − cos2αu4e2xð1−u2Þ�−1
2; 0 ≤ α ≤

π

2
; 0 ≤ x ≤ 1: ðA1Þ

Lþ is a non-negative function which vanishes if α ¼ π
2
or x ¼ 0, and has a singular point at (0,1);

L−ðy; xÞ ¼ ffiffiffi
y

p �Z
1

0

du u2 eyð1−u2Þ½1 − u4e2yð1−u2Þ�−1
2 þ

Z
1ffiffi
x
y

p du u2 eyð1−u2Þ½1 − u4e2yð1−u2Þ�−1
2

�
; 0 ≤ x ≤ y ≤ 1: ðA2Þ

L− is also a non-negative function. It vanishes at the origin and becomes singular at y ¼ 1. There is a simple relation
between Lþ and L−, namely Lþð0; xÞ ¼ L−ðx; xÞ;

Eþðα; xÞ ¼ 1ffiffiffi
x

p
Z

1

0

du
u2

�
exu

2 ½1 − cos2α u4 e2xð1−u2Þ�−1
2 − 1 − u2

�
; 0 ≤ α ≤

π

2
; 0 ≤ x ≤ 1: ðA3Þ

Eþ is singular at x ¼ 0 and (0,1);

E−ðy; xÞ ¼ 1ffiffiffi
y

p
�Z

1

0

du
u2

ðeyu2 ½1 − u4e2yð1−u2Þ�−1
2 − 1 − u2Þ þ

Z
1ffiffi
x
y

p
du
u2

eyu
2 ½1 − u4e2yð1−u2Þ�−1

2

�
; 0 ≤ x ≤ y ≤ 1: ðA4Þ

E− is singular at (0,0) and y ¼ 1. Just like for the L’s, one also has Eþð0; xÞ ¼ E−ðx; xÞ;

QðxÞ ¼ ffiffiffi
π

p
erfið ffiffiffi

x
p Þ − exffiffiffi

x
p ; ðA5Þ

which is the special case of Eþ with α ¼ π
2
. Here erfiðxÞ is the imaginary error function. A useful fact is that its small-x

behavior is given by

QðxÞ ¼ −
1ffiffiffi
x

p þ ffiffiffi
x

p þOðx3
2Þ; ðA6Þ

IðxÞ ¼ I0 −
Z

1ffiffi
x

p
du
u2

eu
2 ½1 − u4e2ð1−u2Þ�12; I0 ¼

Z
1

0

du
u2

ð1þ u2 − eu
2 ½1 − u4e2ð1−u2Þ�12Þ; 0 < x ≤ 1: ðA7Þ

Numerically, I0 ¼ 0.751.

APPENDIX B: THE QQq SYSTEM

We will give a brief review of the string construction for
the QQq system proposed in [8], whose conventions we
follow. We are limited here to the potential V0 correspond-
ing to the ground state.
From the point of view of four dimensional string models

[12], the only relevant string configurations are those

shown in Fig. 18. The first consists of the valence quarks
joined by strings. The strings meet at the string junction.
This is a usual string picture for doubly heavy baryons. The
second is obtained by adding a virtual pair qq̄ to the first
configuration. It is the same as that of Fig. 1(b) which
describes two noninteracting hadrons: Qqq and Qq̄.31 The
reason that the second configuration contributes to the
ground state is that for large l its energy is of order 1,
whereas the energy of the first configuration is of order l.

30The soft wall in such units is located at 1.

31Another disconnected configuration consisting of QQq and
qq̄ doesn’t contribute to the ground state.
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The transition between the two different regimes corre-
sponds to the baryon decay

QQq → QqqþQq̄: ðB1Þ
In the language of string theory, such a decay can be
interpreted as string breaking. One of the strings attached to
the heavy quarks breaks down.
Nowconsider these configurations in the five-dimensional

framework. We begin with the connected configuration of
Fig. 18(a). The important point here is that the shape of the
configuration changes with the increase of heavy quark
separation. As a result, the single string configuration in four
dimensions is replaced by three different configurations in
five dimensions, as those of Fig. 19.
For small l the corresponding configuration is labeled

by (s). In this case, the total action is the sum of the Nambu-
Goto actions for the three fundamental strings plus the
actions for the baryon vertex and background scalar. The
relation between the energy and heavy quark separation is
written in parametric form

l ¼ 2ffiffiffi
s

p Lþðα; vÞ;

EQQq ¼ g
ffiffiffi
s

p �
2Eþðα; vÞ þQðqÞ −QðvÞ þ 3k

e−2vffiffiffi
v

p

þ n
e
1
2
qffiffiffi
q

p
�
þ 2c; ðB2Þ

with the parameter v varying from 0 to q. The latter is a
solution to Eq. (3.5) in the interval [0, 1]. The functions Lþ
and Eþ are as defined in Appendix A. c is a normalization
constant. The tangent angle α can be expressed in terms of
the parameter v by using the force balance equation at
r ¼ rv. The result is given by Eq. (3.13).
Since l is an increasing function of v, increasing l leads

to a situation where the vertex reaches the position of the
light quark. In this case the configuration looks like that of
Fig. 19(m). It differs from the first only by the absence of
the string stretched between the vertex and light quark so
that the quark sits on top of the vertex. Hence the distance l
is expressed in terms of v and α by the same formula as
before, only for another parameter range, whereas the
energy is expressed by

EQQq ¼ g
ffiffiffi
s

p �
2Eþðα; vÞ þ 1ffiffiffi

v
p ð3ke−2v þ ne

1
2
vÞ
�
þ 2c:

ðB3Þ
Clearly, it can be obtained from (B2) by formally setting
q ¼ v. In this case, α is expressed in terms of v by
Eq. (3.24), with v̄ replaced by v. By construction, the
tangent angle must be non-negative. This condition allows
one to find a range for v. It is given by ½q; v0�, where v0 is a
solution to Eq. (3.25) (with v̄ replaced by v). The meaning
of the upper bound is that αðv0Þ ¼ 0. In other words, there
is no cusp at the string endpoints at x ¼ 0.
From the expression (B2), it follows thatl remains finite at

v ¼ v0. The question now is how to reach larger values of l.
The answer is to consider negative values of α. In that case,
the configuration profile becomes convex near x ¼ 0, as
shown in Fig. 19(l). The desired result is obtained from the
previous one by replacing Lþ and Eþ with L− and E−. So,

l ¼ 2ffiffiffi
s

p L−ðλ; vÞ;

EQQq ¼ g
ffiffiffi
s

p �
2E−ðλ; vÞ þ 1ffiffiffi

v
p ð3ke−2v þ ne

1
2
vÞ
�
þ 2c:

ðB4Þ

FIG. 19. Three types of connected configurations for theQQq system in five dimensions. α denotes the tangent angle of the left string.
The gray horizontal line in (l) represents the soft wall at r ¼ 1=

ffiffiffi
s

p
.

FIG. 18. String configurations contributing to the potential V0

of the QQq system.
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Here the parameter v goes from v0 to v1, where v1 is a
solution to Eq. (3.30) in the interval [0, 1]. λ is the function of
v given by Eq. (3.29). The strings approach the soft wall as
λ → 1. This places the upper bound on v.
A summary of the above discussion is as follows. The

energy of the connected configuration as a function of the
heavy quark separation is given in parametric form by the
two piecewise functions EQQq ¼ EQQqðvÞ and l ¼ lðvÞ.
For future reference, we give a brief description of

EQQqðlÞ for small and large l. It behaves for l → 0 as

EQQqðlÞ ¼ EQQðlÞ þ EqQ̄ þ oðlÞ;
with EQQ ¼ −

αQQ
l

þ cþ σQQl: ðB5Þ

EqQ̄ is equal to EQq̄ defined in (3.4) and the coefficients are
given by

αQQq ¼ −l0E0g; σQQq ¼
1

l0

�
E1 þ

l1
l0
E0

�
gs; ðB6Þ

where l0¼ 1
2
ξ−

1
2Bðξ2;3

4
;1
2
Þ, l1¼ 1

2
ξ−

3
2½ð2ξþ 3

4
k−1
ξ ÞBðξ2;3

4
;−1

2
Þ−

Bðξ2;5
4
;−1

2
Þ�, E0 ¼ 1þ 3kþ 1

2
ξ
1
2Bðξ2;− 1

4
; 1
2
Þ, and E1 ¼

ξl1 − 1 − 6kþ 1
2
ξ−

1
2Bðξ2; 1

4
; 1
2
Þ. HereBðz; a; bÞ is the incom-

plete beta function and ξ ¼
ffiffi
3

p
2
ð1 − 2k − 3k2Þ12. Thus,

the model we are considering has the desired property
of factorization, expected from heavy quark-diquark
symmetry [26].
EQQq behaves for l → ∞ as

EQQq ¼ σl − 2g
ffiffiffi
s

p
IQQq þ 2cþ oð1Þ;

with IQQq ¼ Iðv1Þ −
3ke−2v1 þ ne

1
2
v1

2
ffiffiffiffiffi
v1

p ðB7Þ

and the same string tension σ as in (3.2). The function I is
defined in Appendix A.
A five-dimensional counterpart of the disconnected

configuration of Fig. 18(b) is shown schematically in
Fig. 5(b). It describes the noninteracting hadrons and,
therefore, the total energy is the sum of the rest energies
of the hadrons. Explicitly, it is given by Eq. (3.3).

Like in lattice QCD, the potential V0 is given by the
smallest eigenvalue of a model Hamiltonian

HðlÞ ¼
�
EQQqðlÞ ΘQQq

ΘQQq EQqq þ EQq̄

�
; ðB8Þ

with ΘQQq describing the mixing between the two states.
Explicitly,

V0 ¼
1

2
ðEQQq þ EQqq þ EQq̄Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðEQQq − EQqq − EQq̄Þ2 þ Θ2

QQq

r
: ðB9Þ

It is instructive to give an example of this potential. For
the same parameter values as in Fig. 10, it is shown in
Fig. 20. The potential asymptotically approaches EQQq as l
tends to zero and EQqq þ EQq̄ as l tends to infinity. The
transition between these two regimes occurs around l ¼
lQQq which is a solution to the equation

EQQqðlQQqÞ ¼ EQqq þ EQq̄: ðB10Þ

This equation simplifies drastically at large l, where the
phenomenon of string breaking is expected to occur.
Combining (B7) with (3.3), one gets

lQQq ¼
3

e
ffiffiffi
s

p
�
QðqÞ− 1

3
QðvÞ þ k

e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p þ 2

3
IQQq

�
:

ðB11Þ

For the parameter values of Sec. III, a simple estimate
gives lQQq ¼ 1.257 fm.

FIG. 20. The potential V0 of the QQq system. Here
ΘQQq ¼ 47 MeV.
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