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In ultra-small electronic devices of the next generations the semiclassical model of electron motion in a
periodical lattice between collisions turns out to be inadequate because the electron spread has magni-
tude order of the size of the ultra-small electronic device. In this Letter we consider the basic conceptual
framework regarding how the length scale of the electrical device influences the transport behavior of
the electrons between collisions and the electrical current. By taking into account the interference effects
we obtain a very basic model for electrons transport, where the density current peak is given as function
on the ratio between the thermal de Broglie wavelength and the lattice period. This result could be also
useful in order to understand the basic effect of the insulator/metal transition.

© 2010 Elsevier B.V. All rights reserved.
Let us consider one of the most popular electric devices: the
field effect transistor, which is basically a resistor consisting of a
region called the channel with two conductive contacts at its two
ends called the source and the drain. The electrical current gen-
erated in the channel depends on the voltage applied to a third
terminal called the gate. At present, most of the researches are
addressed to the understanding of the contribution to the device
performance from effects like interaction between electrons, im-
purities, granularity of the dopant, and so on [1]. In fact, power
consumption and heat problems are two of the most actual rele-
vant problems for nanoscale electronic devices.

Consider that we are now in the so-called 45 nm transistor gen-
eration, then a typical transistor has a channel length of order of
50 nm, which amounts to a few hundred of atoms. At this scale
length the transport behavior along the direction of the channel is
still of ballistic kind and typical quantum effects like interference
are not considered [2]. Within the next five years, or so, it is ex-
pected that device lengths will reduce to 16 nm or less [3]. Hence,
the spread of electrons is going to be comparable with this channel
length; for instance, at room temperature the thermal de Broglie
wavelength λ for electrons in Silicon is of order of 5 nm. Therefore,
we expect that in the next generations of ultra-small transistors
quantum mechanics issues like quantum localization, that is how
small can be the minimum area in which a single electron can be
localized, will play a crucial role since the effective size of the elec-
tron would be of the order of the lattice period; if not, the electron
wave-function will spread over the whole channel and the drain
and source contacts giving raise to questions of coexistence of clas-
sical apparatus (the two contacts) and quantum environment (the
channel) [4].
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Up to now, an approach to the understanding of the transport
problem from large macroscopic conductors to small atomic scale
conductors has been adopted. Typically, in this approach the mod-
els are based on the semiclassical acceleration theorem (3) and
on the associated Boltzmann transport equation for macroscopic
semiconductors [5,6], then quantum confinement effects arising at
small atomic scale have been treated by means of some effective
potentials [4,7].

On the other hand, bottom–up approaches including quantum
effects have been recently found to be more suitable for the un-
derstanding of the electrons transport in ultra-small devices [2].
Following this kind of approach here we include in our model,
from the very first steps, also the quantum interference effect.

To this end we introduce a very basic model by neglecting the
motion along the plane perpendicular to the channel direction, we
thus only consider the motion of an electron with charge e in a
one-dimensional periodical lattice under the effect of an homoge-
neous external field E . When the external field is small enough,
then it is a well-know fact [8–10] that an electron initially pre-
pared in the first bands remains confined in a finite region for a
long time much larger than the Bloch period T B given below, and
finally it escapes because of the tunneling effect. Such a confined
motion is a periodical-like motion, usually named Bloch Oscillators,
with period

T B = 2π h̄

|F |d (1)

where F = −Ee is the strength of the external homogeneous force
and where d is the period of the one-dimensional periodical lat-
tice.

Indeed, for macroscopic devices and in the bullet-like regime it
is expected that when the quantum particle is initially prepared
on one energy band of the periodical lattice, then the semiclassi-
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cal picture associates the band dispersion relation E (k) with the
electron velocity in the position space

v(k) = 1

h̄

dE (k)

dk
, (2)

where k denotes the quasimomentum variable belonging to the
Brillouin zone (or reciprocal lattice) B = (−π

d ,+π
d ]. On the other

hand, because of the spatially uniform applied force F , the electron
moves in the quasimomentum space according to the “Newton’s
law in the k space” [11–16] (also called “semiclassical acceleration
theorem”)

h̄
dk

dt
= F . (3)

Then the dynamics of the electron in the quasimomentum space is
given by

k(t) = 1

h̄
F t + k0, (4)

k0 is the value of the quasimomentum at the initial instant t = 0.
From this law and from the Bragg’s reflection process in the Bril-
louin zone, the electron motion is periodic with period given by
Eq. (1).

When scattering processes interrupt this oscillatory behavior,
then the electron changes its quasimomentum k restoring the ther-
mal equilibrium, and the scattered electron will be found close to
the minimum energy at k0 = 0. If the average scattering time is
much smaller than T B/2 then the electron will remain in the range
where its velocity v(k) takes positive values, and thus an increase
of F will generate a larger density current; in contrast, for scat-
tering time larger than T B/2, the electron current density can be
expected to drop with the field [17,18].

We may remark that the rather simple argument given above
has two serious limits as pointed out by, respectively, [19,20]:

1) It treats the electron wave-function as a pure Bloch state, for
which the acceleration theorem holds true in the semiclas-
sical form (3); that is, it reduces the initial distribution of
electron momentum to a Dirac δ-function in wavevector space
neglecting the thermal broadening of this distribution at finite
temperatures.

2) This semiclassical picture describes the dynamics of the wave-
packet when the channel length is much more greater than
the spread of the wave-packet of the electron, which in turn
is much larger than the lattice constant.

Therefore, in nanoscale devices, where lengths are typically in
a range about ten nanometers or less, the wave nature of electrons
cannot be anymore neglected and the electron wave-functions
should spread over only few lattice periodical sites or less, then the
electron wave-packet cannot be treated as a pure Bloch state and it has
a given not zero standard deviation in the k-space. In such a case, the
group velocity formula (2) and the semiclassical acceleration theo-
rem (3) hold true in the mean value sense. More precisely Eq. (3)
should replaced by (see, e.g., [21])

h̄
d〈k〉t

dt
= F , (5)

where 〈k〉t denotes the centroid of the wave-packet in the quasi-
momentum representation at time t , and (2) should be replaced
by (see, e.g., [22])

〈v〉t = 1

h̄

[
dE (k + Ft/h̄)

dk

]
, (6)
where 〈v〉t denotes the group velocity of the wave-packet in
the position representation at time t . Here, [g] = ∫

B g(k)|a(k)|2 dk
denotes the expectation value of an observable g(k) on the initial
wave-packet a(k) in the k-space.

By means of (6) we compute the particle current density. To
this end we assume that the electron is prepared in the first
band and, as in [4], that the initial wave-packet a(k − k0;λ) has
a Gaussian-like shape with center k0, where a(k, λ) is the follow-
ing Gaussian-like function periodically arranged on the Brillouin
zone:

a(k, λ) = ce−λ2k2/4π , k ∈ B, (7)

where c is the normalization numerical pre-factor given by

c = [√
2π erf(

√
πλ/

√
2d)

]−1/2
,

and where λ is the thermal de Broglie wavelength given by

λ =
√

2π h̄2

m�kB T

where m� is the electron effective mass and T is the temperature.
The effective size of the electron particle is of order λ.

If, as usual, we assume that the dispersion relation of the first
band is simply given by

E (k) = 1

2
δ
[
1 − cos(kd)

]
,

where δ is the amplitude of the band, then, from (6), it follows that
the mean velocity of an electron with initial wave-packet a(k −
k0;λ) is given by

〈v〉t(k0;λ) = 1

h̄

∫
B

dE (k + Ft/h̄)

dk

∣∣a(k − k0;λ)
∣∣2

dk

= 1

h̄

∫
B

dE (k + k0 + Ft/h̄)

dk

∣∣a(k;λ)
∣∣2

dk

= vmax(λ) sin
[
dk(t)

]
(8)

where k(t) is the law given in Eq. (4), and

vmax(λ) = dδ

2h̄
m(λ) (9)

where a straightforward calculation gives that

m(λ) = �[erf((λ2/d2 + i)d/2λ
√

2π )]
eπd2/2λ2 erf(

√
πλ/

√
2d)

is a real-valued function which takes values within the interval
[0,1], depending on the ratio between the thermal de Broglie
wavelength and the lattice period.

We may remark that the spatial amplitude of this oscillation is
given by

xmax(λ) = h̄

F
vmax(λ) = dδ

2F
m(λ)

and that in the limit of large thermal de Broglie wavelength we
obtain again

lim
λ→+∞ vmax(λ) = dδ

2h̄
(10)

in agreement with Eq. (33) by [18].
In the limit of an electron scattering frequency negligibly small

with respect to the Bloch frequency, then any electron would even-
tually become randomly distributed throughout the Brillouin zone
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with given distribution function f (k0), where k0 denotes the cen-
troid of the electron wave-packet in the k-space. Such a distribu-
tion function is normalized as follows∫

B

f (k0)dk0 = Nd

2π

where N is the total number of electrons per unit length. Even if
this distribution function can always be expanded into a Fourier
series [23], here we restrict ourselves to a basic simplified model
where

f (k0) = Nd

2π

[
1 + cos(dk0)

]
(11)

is an even function with minimum value in correspondence of the
bottom of the dispersion relation E (k) at k = 0. Here, we adopt this
continuous distribution, rather than using the thermal-equilibrium
limit (which essentially corresponds to f (k0) = δ(k0) where δ(k0)

is the Dirac’s delta at k0 = 0); however, our qualitative conclusions
will be independent of this choice.

Given a distribution function f (k0) of the form (11), and draw-
ing on the velocity relation, we obtain the particle current density
at time t:

jt(λ) =
∫

B

〈v〉t(k0;λ) f (k0)dk0. (12)

If we insert (8) in (12) we finally get the explicit expression for the
particle current density

jt(λ) = vmax(λ)

∫
B

sin
[
d(k0 + Ft/h̄)

]
f (k0)dk0

= jmax(λ) sin(dt F/h̄) (13)

where the maximum value of the particle current density is given
by

jmax(λ) = 1

2
N vmax(λ). (14)

From relation (9) then we obtain that the maximum value of
the particle current density will depend on the thermal de Broglie
wavelength λ as follows

jmax(λ) = Jm(λ) (15)

where

J = Ndδ

4h̄

is the well-known particle current density for macroscopic devices,
for which λ is much larger than the period d of the periodical lat-
tice and where m(λ) ≈ 1. We may remark that the peak current J
divided by the lattice period linearly depends on the band width
in agreement with experiment and numerical results (see, e.g., [24,
Fig. 3-Top]).

In Eq. (15), the peak current J is modulated by means of the
term m(λ) which monotically increases with respect to the ratio
between the thermal de Broglie wavelength and the lattice period.
In Fig. 1 we plot the graph of the maximum value of the particle
current density (15) as function of the thermal de Broglie wave-
length λ, where d is the period lattice. Hence, for λ of the order of
the lattice period d then we expect to observe a strong damping
effect on the peak current. In particular, the maximum value of the
particle current density decreases when the wave-packet is sharply
localized in the position space, and this value goes to zero when
the wave-packet initially coincides with a Wannier function, which
corresponds to a constant wave-function in the k-space (that is, for
λ → 0). On the other side, the peak current is not damped when
Fig. 1. Maximum value of the particle current density versus the thermal de Broglie
wavelength λ, where d is the period lattice. J = Ndδ/4h̄, where N denotes the total
number of electrons for unit length and δ denotes the energy width of the band.

Table 1
Numerical constants for some semiconductors at T = 300 K [25]; λ represents the
thermal de Broglie wavelength and the value m(λ) represents the modulation factor
of the particle current density peak.

m� λ (nm) d (nm) λ/d m(λ)

Si 0.98m0 4.35 0.5431 8.00 0.9524
GaAs 0.07m0 16.26 0.5653 28.77 0.9981
InP 0.073m0 15.92 0.5868 27.14 0.9979
GaSb 0.049m0 19.44 0.6094 31.89 0.9985
InAs 0.023m0 26.18 0.6059 43.22 0.9992
InSb 0.013m0 37.73 0.6479 57.16 0.9995

Table 2
Metal/insulator transition for Nb-doped SrTixNb1−xO3 with concentration below and
beyond the critical concentration value x = 0.25.

m� λ (nm) d (nm) λ/d m(λ)

x < 0.25 8m0 1.52 0.3905 3.90 0.6577
x > 0.25 0.2m0 9.62 0.3905 24.64 0.9974

the thermal de Broglie wavelength is of the order of about ten
times the lattice period.

In Table 1 we consider different semiconductors, where we
compute the thermal de Broglie wave-functions at T = 300 K and
we see that for these materials the modulation factor is close to 1;
only for Silicon we expect to see a small damping effect on the
current peak since the modulation factor is about 0.95.

We close our Letter remarking that Eq. (15) could also explain
some basic effects of the metal/insulator transition. Indeed, it is a
well-known fact that the qualitative difference between crystalline
insulators and metals depends on the position of the Fermi level:
insulator behavior corresponds to filled band, while partially filled
band corresponds to metallic behavior [26]. However, how pointed
out in [27], the detailed understanding of this most basic electronic
transition, i.e. the transformation of metal to insulator, is still far
from complete; in this sense our research could be useful in or-
der to quantitative understand the difference between crystalline
insulators and metals. For instance, let us consider the metal-to-
insulator transition of Nb-doped SrTi1−xNbxO3 bulk, where for Nb
concentration beyond the critical transition value x = 0.25 the ef-
fective mass drops from m�/m0 > 8 to m�/m0 > 0.2 [28]. Indeed, in
Table 2 we compare the modulation factor for Nb-doped insulator
SrTiO3. For small concentration we observe a very severe damping
factor; in contrast, for concentration larger than the critical con-
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centration value x = 0.25 the modulation factor is practically 1 and
we don’t see damping effect in agreement with numerical analy-
sis [28].
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