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Nanocrystalline materials are promising for many applica-
tions because they provide a low-cost, bulk scale synthesis

route to realize the performance advantages of nanostructuring.
Potential applications include a wide range of functional and
structural materials such as magnetic materials with high ex-
change bias,1 optical switches and lasers,2 and materials with
improved mechanical strength and fracture toughness.3 Of
particular recent interest are high-performance, low-cost thermo-
electric (TE) materials for refrigeration and energy scavenging.
In nanocrystalline TE materials it has recently been shown4�7

that the thermal conductivity k can be decreased while preserving
the electronic power factor, thus increasing the figure of meritZT
in nanocrystalline materials at much lower cost than in epitaxially
grown superlattices.

The dominant mechanisms for thermal conductivity reduc-
tion in nanocrystalline materials are the effects of porosity and
phonon scattering at grain boundaries. However, a quantitative
understanding of these two mechanisms has been lacking,
because of the challenges in isolating these effects from each
other and from other phonon scattering mechanisms including
phonon�phonon (umklapp) scattering and impurity/alloy scat-
tering. Grain boundary scattering coupled with other scattering
mechanisms has been studied experimentally in a wide variety of
materials. Early studies by Goldsmid, Parrot, Rowe, and co-
workers showed significant reductions of the thermal conductiv-
ity of heavily doped TE alloys with micrometer-sized grains.8�10

Recent measurements on nanocrystalline TE materials including

Si,6 SiGe,7,11 and BixSb2�xTe3
4,5 showed even larger reductions,

by up to 90%.6 Non-TE materials have yielded similar effects,
including reductions by 60�90% in micrometer-grained
Y3A5O12 (ref 12) and nanocrystalline yttria-stabilized zirconia.

13

The physics of thermal conductivity is commonly interpreted
using kinetic theory

k ¼ 1
3∑pol

Z
CvΛeff dω ð1Þ

where C is the spectral heat capacity, v is the group velocity, ω is
the frequency,Λeff is the effective mean free path (MFP), and the
sum runs over all phonon polarizations. Λeff includes all those
scattering mechanisms present in a bulk sample,Λbulk, as well as
additional scattering due to grain boundaries, Λbdy, which are
combined using Matthiessen’s rule: Λeff

�1 = Λbulk
�1 þ Λbdy

�1 .
The greatest challenge in quantitatively predicting this thermal

conductivity reduction is in calculating the effective MFP for
grain boundary scattering

Λbdy ¼ f ðDavg,ωÞ ð2Þ
Here Λbdy is a function of the average grain size, Davg, and
phonon frequency. In general eq 2 may also depend on atomistic
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ABSTRACT: The thermal conductivity reduction due to grain
boundary scattering is widely interpreted using a scattering
length assumed equal to the grain size and independent of the
phonon frequency (gray). To assess these assumptions and
decouple the contributions of porosity and grain size, five
samples of undoped nanocrystalline silicon have beenmeasured
with average grain sizes ranging from 550 to 64 nm and
porosities from 17% to less than 1%, at temperatures from
310 to 16 K. The samples were prepared using current activated,
pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show aT2 dependence which
cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new
frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon
frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the
recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration
of nanocrystalline materials in devices such as advanced thermoelectrics.
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details such as the grain boundary structure, impurity atoms at
the boundary, etc., which affect the phonon transmission and
reflection at each interface,14�18 and have been predicted by
Klemens19 to give a frequency dependence Λbdy � Davgω

n with
n ranging from 0 to �2. However, by far the most common
approach6�9,11,13,20,21 to eq 2 treatsΛbdy as “gray” (independent
of ω) and simply equates the two length scales

Λbdy � Davg ð3Þ
Although eq 3 is widely used and is a plausible first-order

estimate for Λbdy, it has not been justified by direct comparison
with experiments on a well-understood model system. Thus, the
primary goal of the present work is to experimentally quantify
the effects of grain size and porosity on the phonon thermal
conductivtiy of nanocrystalline materials. We focus here on
undoped silicon because most previous applications of eq 3 were
for systems complicated by multiple other phonon scattering
mechanisms6�9,11,13,20,21 such as alloy atoms and ionized do-
pants, and in some cases porosity of several percent ormore, all of
which complicate a direct assessment of the grain boundary
scattering itself.
Experimental Details. A. Sample Preparation. The samples

used in this study were prepared using current activated, pressure
assisted densification (CAPAD), also known as spark plasma
sintering (SPS) or the field assisted sintering technique
(FAST).22 This method uses large current densities (typically
around 2000 A applied to a sample 19 mm in diameter and 1 mm
thick) to induce rapid joule heating while simultaneously apply-
ing high pressure (typically 106 MPa) to the material. Compared
to conventional hot pressing, the CAPAD technique requires
much less processing time, thereby minimizing undesired grain
coarsening while still resulting in sample densities exceeding 99%
of the theoretical full density.
The starting material for four out of five samples was approxi-

mately 1 g of silicon powder with an average grain size ofe50 nm
and a typical agglomerate size of 10�15 μm. The fifth sample,
with the largest final grain size after processing, was made from 1
g of a coarse powder with an agglomerate size of �100 þ 325
mesh (approximately 44�150 μm); note that the grain size of
this latter powder is much smaller than that suggested by the
mesh size, because the grains were always found to be joined into
large agglomerates.
Because these starting powders were exposed to the atmo-

sphere, we expect that they have a native SiO2 layer of thickness
around 1 nm23 on the outermost surface of each agglomerate.
Approximating a typical agglomerate as a sphere of 10 μm
diameter, we estimate an SiO2 concentration on a volumetric
basis of ∼0.06%. To check for oxygen and other possible
impurities, both starting powders and several samples pro-
duced from each powder were analyzed with X-ray diffraction
(XRD) and energy-dispersive X-ray spectroscopy (EDS) spot

checks, with no impurities observed above the detection
threshold (approximately 5 atom % for XRD and 0.5 atom %
for EDS).
The CAPAD apparatus used in this work has been described

previously22 so here we give only a few key details. The inside of
the die and the ends of both plungers were wrapped in graphite
paper to prevent fusion to the samples. Each sample was cold-
pressed at 70.5 MPa for approximately 1 min and the processing
chamber was evacuated below 1.0 � 10�2 Torr prior to the
application of any current. Direct current was then applied
gradually to increase the temperature at approximately
200 �C/min to the target temperatures given in Table 1, requir-
ing typically 1600�1900 A. For the three densest samples the
target temperature was held for one or more minutes. For all five
samples the current ramp was accompanied by a simultaneous
pressure ramp at 35.3 MPa/min to the maximum pressure of
106 MPa.
Table 1 summarizes selected processing conditions used to

control grain size and porosity. The first column gives a code for
each sample, of the form Davg(F%), where Davg is in nanometers
and F is the density normalized to that of pure single crystal
(bulk) silicon. The second column gives the processing tem-
perature. Temperatures above 1200 �C are approximate because
those experiments were current-controlled rather than tempera-
ture-controlled, due to limitations of the thermocouple used. As
expected, samples processed at higher temperature and longer
hold times have larger average grain sizes and higher densities
due to thermally activated grain growth and densification. The
first three samples in Table 1 were designed to span a large range
of grain size while maintaining very high density (F > 99%), while
the fourth and fifth samples were designed to have similar small
grain sizes as the third sample but with significantly lower
densities (F e 97%).
B. Sample Characterization. Figure 1 shows scanning electron

microscopy (SEM) micrographs of fracture surfaces on samples
550 (99%), 144 (99%), and 76 (99%) and polished surfaces on
samples 80 (97%) and 64 (83%). Note the prominent porosity in
the last two samples while no porosity is evident for the first three
samples. The grains are approximately equiaxed. For each
sample, the diameters of approximately 200 distinct grains were
measured from an SEM image of a fracture surface. As detailed in
the Supporting Information, for each sample the measured
distribution of grain sizes is approximately log-normal, with Davg

and standard deviation given in Table 1.
After residual carbon was removed from the graphite paper by

polishing, the density of the samples was measured using an
Archimedes method. Because the pores are not connected, the
water does not penetrate the samples. The Archimedes method
should be more accurate than using volume measured by caliper
measurements, because the latter are subject to errors if there are
any irregularities in the sample shape.

Table 1. The Processing Conditions, Densities, and Average Grain Sizes of the Samples Used in This Study

sample code

Davg (F%)
processing

temperature (�C)
hold time

(min)

density,

F (% of pure Si)

average grain size,

Davg (nm)

std dev of distribution,

(% of Davg)

550 (99%) ≈1250 1 99.5 550 48

144 (99%) ≈1250 2.5 99.4 144 28

76 (99%) 1200 2.27 99.1 76 30

80 (97%) 1190 0 96.7 80 26

64 (83%) 1054 0 83.0 64 35
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C. Thermal Conductivity Measurements. We measure the
thermal conductivity using a standard 3ωmethod.24,25 Although
these samples are expected to be electrically insulating because
the starting powders are undoped, as was checked on several
samples by probing with a multimeter, to further ensure electrical
insulation all samples are polished and then spin-coated with
110 nm of dielectric hydrogen-silsesquioxane (HSQ: FOx from
Dow Corning) prior to microfabrication. Then a gold heater line
is patterned by photolithography and a liftoff method. The heater
line is 10 μm wide, 250 nm thick, and spans 1 mm between the
inner voltage probes.
The standard 3ω method uses the continuum heat diffusion

equation for data analysis to obtain the effective k of the
nanocrystalline substrate. To justify this continuum approxima-
tion it is important to verify that the phonon MFPs are
significantly smaller than the heater line width wH at all tem-
peratures. As detailed in the Supporting Information, following
ref 32 we calculated the distributions of MFPs that contribute to
k in these samples. For both models of ΛBdy presented in the
Discussion Section below, the calculations show that the im-
portant MFPs are indeed much smaller than wH for the four
samples with Davg e 144 nm at all temperatures of interest,
making the continuum 3ω analysis an excellent approximation.
For the largest-grained sample with Davg = 550 nm, the calcula-
tions also verify that the important MFPs are also much smaller
than wH for T as low as ∼30 K, although in the frequency-
dependent model ofΛBdy below 30 K a small fraction of the heat
is carried by MFPs larger than wH. We have also confirmed that
the thermal diffusion wavelength (λdiff = (k/4πfH)

1/2, where k is
the thermal diffusivity and fH is the heater frequency, typically
100�1000Hz) in these experiments is much larger thanDavg and
wH, as required for standard 3ω analysis.
Because these measurements extend well below 50 K, the

nonlinearity of the resistance versus temperature calibration
R(T) of the gold heater line is an important detail. We use an
analytical Bloch�Gruneisen function26,27 to fit the R(T) calibra-
tion data for every sample, which is then differentiated analyti-
cally. Another detail is that the temperature of the gold heater line

and adjacent silicon can be significantly higher than that of the
cryostat’s coldfinger, particularly at low T. Therefore, for every
data point we monitor the average value of the heater line’s
resistance and use its R(T) calibration to determine its tempera-
ture, which is then used as a better indicator of the temperature of
the silicon immediately beneath the heater. The small tempera-
ture drop through the HSQ layer has been neglected because we
estimate it contributes less than 5% error in the assigned
temperature.28

Experimental Results. Figure 2 shows the complete experi-
mental results for the five nanocrystalline Si samples measured in

Figure 1. SEM micrographs of the samples used in this study. (a�c) are fracture surfaces, while (d) and (e) are polished surfaces to facilitate clear
visualization of the pores.

Figure 2. Measured (points) and modeled (lines) thermal conductivity
for nanocrystalline silicon. Measurements for single-crystal Si are from
TPRC.29 The lines are fits using a Born�von Karman (BvK) dispersion
relation and include both gray (dashed lines, eq 6) and frequency-
dependent (solid lines, eq 7) expressions for grain boundary scattering,
using the characteristic lengths given in Figure 3a. At low temperatures
only the frequency-dependent model captures the T2 trend evident in
the experiments.

http://pubs.acs.org/action/showImage?doi=10.1021/nl1045395&iName=master.img-001.jpg&w=499&h=213
http://pubs.acs.org/action/showImage?doi=10.1021/nl1045395&iName=master.img-002.jpg&w=240&h=188
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this study. The modeling curves and Figure 3 will be explained
shortly. The nanocrystalline samples’ k is always smaller than that
of single crystal Si,29 most dramatically at lowerT and for smaller-
grained samples with lower density. By comparison with the
single crystal data, it is clear that most of themeasurements in this
work are in the ballistic regime where the phonon scattering is
dominated by grain boundaries and porosity effects. Umklapp
scattering is also important in the larger-grained samples near
room temperature, as is apparent from the negative slope in the
k(T) curves.
All five samples in Figure 2 show an unexpected power law of

k� T2 at low temperature, inmarked contrast to theT3 power law
that is typically seen in bulk single crystals,29 nanowires,30 and thin
films.31 From the kinetic theory expression of eq 1, it is well-known
that the familiar k � T3 trend arises from the T3 specific heat well
below the Debye temperature TDebye, combined with strong
boundary scattering that is independent of frequency (gray).
Referring to eq 1, we consider two possible explanations of the
T2 trend of Figure 2: an altered dispersion relation affecting C and
v or frequency-dependent boundary scattering affecting Λeff.
We first consider the possible effect of the small grain sizes on

the dispersion relation and C and v, which are expected to be
significantly changed if the important phonon wavelengths λ are
comparable to Davg.

33 However, as described in the Supporting
Information (see also ref 32) the range of important λ contribut-
ing to heat transfer is calculated to be∼10 nm or smaller even at
the lowest temperatures of this study. Because these wavelengths
are much smaller thanDavg, and considering that the variations in
D of any given sample are comparable to if not much larger than
λ, we expect that confinement effects on the phonon dispersion
can be neglected to an excellent approximation. Therefore, we
conclude that the phonon dispersion in these samples should be
well-approximated by the bulk (three-dimensional) phonon
dispersion with C � T3 at low T (ref 33) and conclude that
the Cv term of eq 1 cannot explain the T2 trend of Figure 2.
However, theT2 trend of Figure 2 can be explained by allowing

Λbdy to have a frequency dependence (nongray). A detailed

model appropriate for all T is given in the Discussion Section
below. Here consider briefly the low-T limit of a Debye model
with strong boundary scattering, in which case it is well-known34

that eq 1 simplifies to

k ¼ kBvs
2π2

kBT
pvs

� �3Z ¥

0

x4exΛbdy

ðex � 1Þ2 dx ð4Þ

where kB is the Boltzmann constant, p is the reduced Planck’s
constant, vs is a triply degenerate averaged sound velocity, and x =
pω/kBT. In this limit it is easily shown analytically that ifΛbdy�
ωn, then k � T3þn. Thus, the low-T trend of k � T2 strongly
suggestsΛbdy�ω�1 for smallω, which is within the range�2e
n e 0 suggested by Klemens,19 and as discussed below is also
consistent with several atomistic simulations of frequency-de-
pendent interfacial scattering from the literature. Thus, surpris-
ingly, the widespread assumption of gray grain boundary
scattering6�9,11,13,20,21 indicated by the dashed lines in Figure 2
is not a good approximation for these measurements below about
70 K. An improved model is given in the Discussion Section below.
To highlight the effect of grain size, Figure 4 shows k as a

function of Davg for the fully dense samples (F >99%) at three
temperatures. The experimental points are obtained by power
law interpolation from the main data set of Figure 2, and the
modeling curves will be explained shortly. At lowT the power law
is k � D1, as expected for a system dominated by boundary
scattering, while for higher T and larger grains the k(D) power
law becomes weaker due to the increasing importance of
umklapp scattering.
Figure 5 shows the porosity dependence of the thermal

conductivity for the three samples that have approximately the
same average grain size (within (11% of 72 nm). To facilitate
comparisons, for each temperature, the k values in Figure 5 are
normalized to the k values of the almost-fully dense sample, 76
(99%). Three classical models for porous media based on Four-
ier’s law are also shown.35�37 These classical theories are most
appropriate for isolated pores that are approximately spherical,

Figure 3. Best-fit values of the characteristic MFPs for boundary scattering as a function of average grain size for models using either (a) Born�von
Karman or (b) Debye phonon dispersion. The larger points with black borders are for frequency-dependent grain boundary scattering, obtained by
fitting Figure 2 with eq 7 for all T, while the smaller points are for gray grain boundary scattering, obtained by fitting Figure 2 with eq 6 for T >64 K. For
the Debye model these two sets of points are almost indistinguishable.

http://pubs.acs.org/action/showImage?doi=10.1021/nl1045395&iName=master.img-003.jpg&w=414&h=202
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which as shown in panels d and e of Figure 1 is a good assumption
for sample 80 (97%) but less so for sample 64 (83%).
It is clear that the porosity effect in these measurements is

stronger than any of the classical theories. Although the slightly
nonspherical pore shapes may result in a minor additional
reduction in k,38 we believe that ballistic effects are more
important. Classical theories are based on diffusive transport
and thus require pore sizes much larger than the phonon MFPs,
which in these nanocrystalline samples are comparable to Davg.
However, it is clear from panels d and e of Figure 1 that the actual
pore sizes are comparable to and often smaller than the grain size,
so these samples violate the diffusive assumption in the neigh-
borhood of each pore, most dramatically for sample 64 (83%)
which has nearly as many pores as grains.

Discussion. A. Model of Bulk Thermal Conductivity.We inter-
pret the measurements of Figure 2 with the kinetic theory
expression of eq 1. For simplicity we neglect heat transfer by
the optical phonon branches, which has been shown to be a good
approximation for Si,39 and lump the three acoustic branches into
one triply degenerate branch. Our primary model uses a
Born�von Karman (BvK) dispersion relation identical to that
of ref 40. For comparison purposes, we also present selected
results obtained using a Debye dispersion relation with the same
sound velocity, vs, and cutoff wavevector, q0, as the BvK model.
The Debye dispersion relation is widely used because of its
simplicity,6,8,9,11,12,21,31 but it is also known to significantly
overestimate the group velocity of high-energy phonons, thereby
underestimating the bulk MFPs obtained by fitting and thus
missing out on the full reduction in k for nanostructures of
moderate size.32,40

The phonon scattering mechanisms include impurity/defect
scattering Λimp, umklapp scattering Λumkl, and grain boundary
scattering Λbdy, combined using Matthiessen’s rule

Λ�1
eff ðω,TÞ ¼ Λ�1

impðωÞ þΛ�1
umklðω,TÞ þΛ�1

bdyðωÞ ð5Þ
For impurity scatteringwe use a Rayleigh-like expression,Λimp

�1 =
A1ω

4/v, and for umklapp scattering we use one common form,41

Λumkl
�1 = B1ω

2Te(�B2/T)/v. We determine the parameters A1,
B1, and B2 for the BvK andDebyemodels separately (Table 2) by
fitting each model to literature data for single crystal silicon.29

The high-temperature portion of the fit for the BvK model is
apparent in Figure 2.
B. Gray Model for Grain Boundary Scattering. As noted in

eq 3, the most widespread model of grain boundary scattering is
gray, with Λbdy = Davg. As an initial generalization we consider

Λbdy ¼ RDavg ð6Þ
where the parameter R is introduced to account for the effect of
grain boundary transmission: for lower transmission coefficients
we expect smaller R and thus smaller k. Because all gray models
fail to capture the T2 trend seen in the experiments at low
temperature, we fit eq 6 to Figure 2 only for T > 64 K. Details of
the fitting process are given in the Supporting Information. The
resulting best-fit model curves are shown by the dashed lines in
Figure 2, and the corresponding R values shown by the smaller
points in Figure 3. It is clear that even above 64 K the simple
expression Λbdy = Davg (solid line in Figure 3) is not the best
description of these measurements. Instead, eq 6 with R < 1 is a
better description. Thus, for either dispersion model we find that
the effective MFPs for grain boundary scattering are smaller than
those implied by the widely used assumption R = 1.
C. Frequency-Dependent (Nongray) Model for Grain Bound-

ary Scattering.We now return to the T2 trend seen in Figure 2 at
low T, which as discussed above and further justified below
strongly suggests Λbdy � ω�1 for small ω. Although the full
behavior ofΛbdy(Davg,ω) for allω is unknown and is likely to be

Figure 5. Normalized thermal conductivity vs porosity for the fine-
grained samples 76 (99%), 80 (97%), and 64 (83%) at three tempera-
tures, compared with traditional models for porous media.35�37.

Figure 4. Thermal conductivity vs average grain size for fully dense
samples 550 (99%), 144 (99%), and 76 (99%) at three temperatures.
The model (lines) uses the nongray BvK model with R = 0.72.

Table 2. The Best Fit Parameters A1, B1, and B2 for Debye
and BvK models, Obtained by Fitting Literature Data29 for
Single Crystal Si

model

max. frequency,

2πω0 (THz)

vs
(m/s)

A1
(10�45 s3)

B1
(10�19 s/K)

B2
(K)

Debye 11.03 6084 1.81 2.69 167

BvK 7.02 6084 1.69 1.53 140

http://pubs.acs.org/action/showImage?doi=10.1021/nl1045395&iName=master.img-004.jpg&w=198&h=205
http://pubs.acs.org/action/showImage?doi=10.1021/nl1045395&iName=master.img-005.jpg&w=192&h=198
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a complicated function of ω, here we hypothesize that the ω�1

power law is an adequate approximation over all frequencies, and
thus generalize eq 6 as

Λbdy ¼ RDavgðβω0=ωÞ ð7Þ
Equation 7 introduces a numerical constant β which, like ω0,
depends on the choice of dispersion relation used in the model.
We emphasize that β is not a fitting parameter but rather is fixed
analytically by requiring eq 7 to give the same value of R as the
gray model of eq 6, in the limit of strong boundary scattering and
T . TDebye. As detailed in the Supporting Information, in this
limit we find β = 2/3 for a Debye dispersion and

β ¼ 16� 2π2

7ζð3Þ � 2π2 lnð2Þ ¼ 0:7097

for a BvK dispersion, where ζ is the Riemann zeta function.
Recognizing that there is little difference between these two
values and considering that most real acoustic phonon branches
should be bounded by the Debye and BvK approximations, for
most purposes the value β = 0.70 should suffice.
D. Comparison of Various Models. The solid lines in Figure 2

show the results of fitting our experimental data with the
frequency-dependent grain boundary scattering law of eq 7 and
a BvK dispersion. The five corresponding values of R are shown
by the larger set of points in Figure 3a. For fully dense samples,
the recommended values ofR for the four models considered are
summarized in Table 3. The R values for a Debye model are
smaller than the R values for a BvK model primarily because the
former overpredicts the average group velocity as compared to
the latter.
On comparison of the solid and dashed lines in Figure 2, it is

clear that these measurements are described much better by the
new frequency-dependent model of eq 7 than the standard gray
approach of eq 6. A more quantitative comparison is given in the
Supporting Information, which shows that a BvK dispersion
outperforms a Debye dispersion regardless of the chosen model
for Λbdy, and similarly that the frequency-dependent Λbdy is
better than the gray Λbdy regardless of the chosen dispersion
relation. Averaged across the five samples, the root-mean-square
(rms) residual for a model using the BvK dispersion and nongray
Λbdy is only 7%. In contrast, for the most common approach
using the Debye dispersion and gray Λbdy, the average residuals
are significantly worse, at 77%.
E. Atomistic Interpretation. We now give an atomistic inter-

pretation of the Λbdy � ω�1 frequency dependence of eq 7. At
the scale of individual grains, the MFP for boundary scattering is
determined by D and the specularity and transmissivity of
phonons at each grain boundary. For example, for reflections
by boundaries parallel to the heat current, Ziman42,43 derived

a frequency-dependent expression for specularity, p =
exp[�(16π2η2)/λ2], where η is the rms surface roughness.44

Similarly, heat transfer perpendicular to an interface can be
described by t(ω), the phonon transmissivity, which has been
modeled for idealized interfaces using Green’s functions,14

molecular dynamics,15,16,45 and acoustic and diffuse mismatch
models.12,46

However, even if the p(ω) and t(ω) functions are assumed
known for the boundaries of interest, calculating the correspond-
ing Λbdy is still a challenge. Klemens19 argued that Λbdy should
scale as Davgω

n with �2 e n e 0, with a prefactor that depends
on the angle and density of dislocations at the grain boundary and
various material properties. Another approach uses molecular
dynamics simulations combined with finite element methods,45

though this lacks an analytical form. Here we introduce a simple
analytical framework. The polycrystal is approximated as a
superlattice nanowire, which incorporates the effects of scatter-
ing by boundaries both parallel to and perpendicular to the
transport direction, ultimately leading to40

Λ�1
bdy ¼

3
4
tðωÞ

1� tðωÞ

0
BB@

1
CCA

�1

þ 1þ pðωÞ
1� pðωÞ

 !�1

2
664

3
775D�1

avg ð8Þ

Equation 8 yields further insight by considering the limiting
behaviors of t(ω) and p(ω) effects separately. First, consider the
limit where the overall transport is limited by the transmissivity.
We expect this limit to be most relevant because high-quality
grain boundaries should be smooth and have large p (ref 42) and
also because a separate analysis47 of the effective k of a nano-
composite showed that the overall transport is most often limited
by scattering perpendicular to interfaces (t effect) rather than
parallel to interfaces (p effect). In this limit eqs 7 and 8 give

t ¼ Rβ
3
4
ðω=ω0Þ þ Rβ

ð9Þ

which for small ω can be linearized as

t � 1� 3
4
γω ð10Þ

where γ = (Rβω0)
�1. Equation 10 is consistent with various

atomistic simulations14�18 which also predict t≈ 1 asωf 0 and
can be roughly approximated with a slope dt/dω that is a negative
constant for 0 < ω < (1/2)ω0.
Similarly, eq 8 can also be evaluated in the opposite limit where

Λbdy is dominated by specularity effects, although we expect this
to be rare in real materials. This limit yields p = (1� γω)/(1 þ
γω), which, to leading order, is also linear in ω

p � 1� 2γω ð11Þ
This trend is not consistent with Ziman’s specularity equation,42,43

which for small ω and assuming linear dispersion can be written
p ≈ 1 � (2ηω/vs)

2, that is, parabolic in ω. However, detailed
atomistic simulations of specularity by Zhao and Freund14 show
specularity trends ranging from approximately 1� p�ω2 (as in
Ziman’s expression) to 1 � p � ω (as in eq 11).
Summarizing this discussion, because various atomistic simu-

lations of t(ω) approximately follow eq 10 for small ω, by using
eq 8 we have shown that the small-ω power law Λbdy � ω�1

Table 3. Recommended Values of r for Fully Dense Samples
Using Four Different Models

BvK dispersion Debye dispersion

nongray Λbdy,

eq 7 (recommended for all T)

0.72 0.44

Gray Λbdy, eq 6 (may be acceptable

for T >80 K if other scattering

mechanisms can be neglected;

see Supporting Information)

0.86 0.47
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introduced empirically in eq 7 is consistent with the asymptotic
behavior of atomistic calculations.
Conclusions.This work leads to two major conclusions. First,

the common strategy of setting Λbdy = Davg is not the best
approximation for grain boundary scattering. If a gray model is
desired for simplicity, it would be more accurate to use Λbdy =
RDavg, where recommended values of R for fully dense Si are
given in Table 3 for Born�von Karman (recommended) and
Debye (more common but less accurate) model dispersions. The
R values can be greatly reduced for samples with significant
porosity, as shown in Figures 3 and 5, and R would also be
reduced for lower-quality, less-transmissive grain boundaries.
The other major result of this study is to identify an asymptotic

ω�1 frequency dependence in the MFPs for grain boundary
scattering. This frequency dependence is necessary to explain the
k� T2 trend seen in Figure 2 at low T, and we have argued that it
is also consistent with most atomistic models of grain boundary
transmissivity from the literature. Unlike the traditional gray
model for Λbdy from eq 3, the new frequency-dependent model
of eq 7 works at all temperatures measured (16�310 K), and it
outperforms the gray model for both Debye and Born�von
Karman dispersion relations.
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