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A stochastic Bayesian approach is applied to investigate the uncertainty in the rate coefficient of
H + O2 ? OH + O (k1) using the latest shock-tube experimental data. We simultaneously calibrate all ran-
dom variables using a recently developed stochastic simulation algorithm which allows for efficient sam-
pling in the high-dimensional parameter space. We introduce the idea of ‘‘irreducible’’ uncertainty when
considering other parameters in the system. Nine stochastic models are constructed depending on the
choice of uncertainties, hydrogen concentration, gas temperature, pressure, and rate coefficients of other
reactions. The sensitivity analysis of uncertainty in k1 on these uncertainty parameters is performed. It is
shown that the introduction of ‘‘irreducible’’ uncertainty does not always increase the uncertainty of k1.
In addition, we observe the high sensitivity of uncertainty in k1 to the uncertainty in the measured time-
shift. Our results show the strong temperature dependence of the uncertainty in the rate coefficient.
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1. Introduction play a critical role, not only for the calibration of the model param-
At 7th International Conference on Chemical Kinetics (2011,
MA), one whole session was dedicated to the uncertainty quantifi-
cation (UQ) in terms of chemical kinetics. Their conclusions high-
lighted importance of making the comprehensive experimental
database of the chemical kinetics and uncertainties associated with
these experimental data.

About the data, there are two types of so-called ‘‘experimental’’
data: one is the ‘‘raw’’ data and the other is the ‘‘reduced’’ (i.e. post-
processed) data. Typically, in the combustion experiments, the raw
data is composed of the radiation traces, species concentration his-
tories, etc. On the other hand, the ‘‘reduced’’ data is, for instance,
the rate coefficients. Indeed, experimentalists construct a reduced
kinetic mechanism based on their knowledge and assumptions,
and then calibrate the rate coefficients in order to reasonably
reproduce this ‘‘raw’’ data. In many literatures, both types of data
mentioned are treated simply as ‘‘experimental’’ data. Due to the
additional uncertainty associated with a reduction procedure,
these two types of data have a different degree of uncertainty
and we need to pay extra attention when using them in the same
system. In fact, traditional procedures for validation of models in
computational sciences and engineering are often related to data
fitting in the sense that the closer the output quantities computed
by models are to experimental observations, the better the models
should be. It is clear that, for such processes, experimental data
eters (e.g. reaction rate constants, etc.), but also for the validation
of the model itself. To this aim, it is important to understand the
difference between the model uncertainty and the experimental
uncertainty. When the ‘‘reduced’’ data is used, the experimental
uncertainty have to be included the uncertainty related to the
reduction procedure [1]. In the recent work of Turányi et al. [2],
they proposed a new approach, in which they rigorously take into
account both ‘‘raw’’ data and ‘‘reduced’’ data (called direct and
indirect in their paper) during the calibration process.

The objective of this study is to perform a post-processing of the
experimental (‘‘raw’’) data and give a supplement to the uncer-
tainty of the ‘‘reduced’’ data. To this aim, we propose the compre-
hensive and robust calibration process based on Bayesian
approach. In order to assess the capability of our analysis, we uti-
lize the proposed methodology to investigate the uncertainty in
the rate coefficient of H + O2 ? OH + O. The well-calibrated ‘‘raw’’
experimental data recently acquired at the High Temperature Gas-
dynamics Laboratory at Stanford University [3] was available,
describing the ignition phenomena of O2/H2/Ar mixture behind
the reflected shock waves. There are numerous studies conducted
to compute this rate coefficient (see the NIST database [4]), how-
ever a large scatter of the coefficients in the Arrhenius form is still
present (see Table 1), which we attribute to the drawback during
the conventional calibration procedure, as well as to the difficulty
of the experiments.

There are many other noticeable UQ works in the chemical ki-
netic field. For instance, Sheen et al. [5] developed the spectral
expansion technique and performed the kinetic uncertainty
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Table 1
Results of Arrhenius coefficients of H + O2 ? OH + O in the selected past studies [4]. (Note: Turányi et al. provided the temperature-dependent uncertainty in k1. See [2].)

Reference T (K) A1 (cm3 mol�1 s�1) m1 H1 (K)

Experimental works
Hong et al. [3] 1100 � 3370 (1.04 ± 0.03) � 1014 0.0 7705 ± 40
Yuan et al. [27] 1050 � 2700 1.59 � 1017 �0.93 8490
Pirraglia et al. [23] 962 � 1700 (1.68 ± 0.19) � 1014 0.0 8119 ± 139
Fujii and Shin [28] 1900 � 2650 5.97 � 1014 0.0 11400
Frank and Just [29] 1700 � 2500 (2.43 ± 0.33) � 1014 0.0 8700 ± 261
Namoradze et al. [30] 839 � 924 9.72 � 1012 0.0 6369

Theoretical works
Miller and Garrett [31] 1000 � 5500 6.69 � 1011 0.55 5970
Germann and Miller [32] 500 � 2000 1.76 � 1014 0.0 8381

Post-processing works
Turányi [2] 980 � 2000 1.88 � 1011 �0.0957 7515
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propagation through the ethylene combustion and recently ex-
tended the model [6]. Russi et al. [7] utilized the Data Collaboration
method [8] and took into account the uncertainty in experimental
observations and model parameters in the context of sensitivity
analysis. Also, recently Nagy and Turányi [9] investigated the
uncertainties associated with the expression of the rate coefficient
in the Arrhenius form and emphasized the importance of consider-
ing the correlation among the Arrhenius coefficients in the varying
temperature chemical kinetic systems. Recently, Turányi et al. [2]
further extended their model to consider the covariance matrix
during minimizing the objective function so that it is possible to
capture the structure of the uncertainties. In addition, uncertainty
analysis solving an inverse problem with the help of Bayesian ap-
proach can be also seen in literature (e.g. [10–12]).

In this paper, we discuss a new type of uncertainty analysis
using Bayesian approach and take into account the effects of uncer-
tainties on some parameters in the model, such as gas tempera-
ture. Indeed, it might not be a good idea to specify these
parameters deterministically, but we should treat them instead
as ‘‘incompletely known’’ and consider the effect of their uncer-
tainties on the model behavior. Here, we call these extra uncertain-
ties as ‘‘irreducible’’ uncertainties. For example, the uncertainties
of other rate coefficients from the literature can also be categorized
into this type of uncertainty. The novel feature of the method used
in this paper is that we solve the inverse problem in the context of
uncertain inputs, such as temperature and pressure. The uncer-
tainty in the inputs arises due to the noise introduced by the mea-
surement apparatus. These input variables are not under
calibration. The objective of model calibration is to quantify the
uncertainty in the rate coefficient, k1, by accounting for the uncer-
tainty in the inputs. There are many studies dealing with how to
properly propagate this type of uncertainty in forward propaga-
tions, but few of them address it in the context of inverse
propagations.

The paper is organized as follows: in the next section, we pres-
ent the proposed UQ model and highlight the difference from the
conventional calibration procedure. The brief descriptions of the
physical model and the experimental data are provided in Sec-
tion 4. In Section 4, the stochastic model is constructed based on
our past studies [13], and the summary of the different stochastic
models with the different choices of random model parameters is
provided. In the result section, a detailed comparison of the results
obtained using different models and statistical dependence (i.e.,
sensitivity analysis) between the ‘‘irreducible’’ uncertainties and
the uncertainty in the rate coefficient is provided.
2. The proposed calibration methodology

Figure 1 schematically shows the proposed calibration method-
ology based on Bayesian approach. Let Mi designate a ith stochastic
system model class [14,15]. Each stochastic system model in Mi is
specified by uncertain model parameters h 2 X � Rd. One can use
data D to compute the posterior probability density function
(PDF) pðhjD;MiÞ in the Bayes’ theorem,

pðhjD;MiÞ ¼
pðDjh;MiÞpðhjMiÞ

c
; ð1Þ

where c is a normalizing constant that makes the probability vol-
ume under the posterior PDF equal to unity, pðDjh;MiÞ is the likeli-
hood function, and pðhjMiÞ is the prior PDF for h. The likelihood
function expresses the probability of observing D based on the mod-
el h in the model class Mi, and is commonly chosen to have the
form

pðDjh;MiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pjCj
p exp �1

2
ðD� XÞTC�1ðD� XÞ

� �
; ð2Þ

where X 2 RNd is the computed model output, C 2 RNd�Nd is a covari-
ance matrix, which still needs to be specified, and Nd indicates the
number of data points. Here, errors at all data points are assumed
to be statistically independent of each other, in other words that
C is a diagonal matrix: Cij = r2dij. Here, r2 ppm is unknown vari-
ance which is the sum of the experimental errors (r2

exp ppm) and
the modeling errors (r2

p ppm). When the same experimental data
is used for all M, the calibration of r2 ppm will provide an indica-
tion of the modeling error r2

p ppm.
The above calculation of the pðhjD;MiÞ is called ‘‘inverse prob-

lem’’ (inside the dashed box in Fig. 1). One of the another impor-
tant objectives of performing the above analysis is to make
robust predictions about quantities of interest (QoI). This process
is called ‘‘forward problem’’. Based on a candidate model class
Mi, all the probabilistic information for the prediction of a vector
of QoI Q is contained in the posterior predictive PDF for Q given
by the theorem of total probability:

pðQ jD;MiÞ ¼
Z

pðQ jh;D;MiÞ � pðhjD;MiÞdh ð3Þ

The above equation obtains the prediction pðQ jD;MiÞ of a vector of
QoI Q 2 Rq by summing up the prediction pðQ jh;D;MiÞ of each
model specified by h 2X weighted by its posterior probability
pðhjD;MiÞdh. In this paper QoI is the rate coefficient k1 of the reac-
tion H + O2 ? OH + O, with k1 following the Arrhenius form:
k1 ¼ A1Tm1 expð�H1=TÞ.

The prior PDFs, pðhjMiÞ, are chosen as uniform distributions for
A1, m1, H1 and r: U[1013,1028] for A1, U[�5,5] for m1, U[0,20,000]
for H1, and U[0,1,000] for r (Table 2). A large interval is assigned
to the prior of A1 due to possible nonzero values for m1. Our prior
PDFs cover all reported values [4,16]. We have adopted such broad
uniform priors due to the large variation in the values reported in
the literature. It should also be noted that, in the proposed Bayes-
ian approach it is the posterior PDF, not the prior PDF, which ulti-



Fig. 1. Schematic of the proposed calibration procedure.

Table 2
Prior distribution for the model parameters of the rate coefficients. The intervals for
the uniform priors are chosen based on past studies [4].

pðA1jMiÞ pðm1jMiÞ pðH1jMiÞ pðrjMiÞ

U[1013,1028] U[�5,5] U[0,20,000] U[0, 1000]
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mately quantifies the uncertainty of the model parameters by
updating the prior distribution. Making use of the data, the pro-
posed Bayesian approach will automatically assign low probability
to the region of the model parameters (as encapsulated in the pos-
terior PDF) that lead to poor agreement of the model with the data
(less probable model).

On the right side of Fig. 1, another inputs, ‘‘irreducible’’ uncer-
tain parameters, are introduced in the form of the probability func-
tions. When we consider the ‘‘irreducible’’ uncertainty, the above
expression of the likelihood function needs to be modified. Here,
we assume that the uncertainty follows the Gaussian distribution
denoted by pðvjMi; hv Þ, where v is a vector storing ‘‘irreducible’’
uncertain parameters and hv is another vector storing parameters
characterizing this distribution, such as mean and variance. Then,
the resultant likelihood function needs to be averaged as follows:

pðDjMi; h; hvÞ ¼
Z

pðDjMi; h;vÞpðvjMi; hvÞdv ð4Þ

This integration is not trivial, and it is computationally expensive if
we approximate it by using the Monte Carlo method. In this study,
we utilize the method recently developed and presented in [17].
3. Physical model and experimental data

Assuming that the temperature and pressure are constant dur-
ing the reaction behind the reflected shock waves [3], the chemical
reactions can be expressed in ordinary differential equations for
each species. The forward rate coefficient of the rth reaction, kf,r,
is calculated using the modified Arrhenius equation:
kf ;r ¼ ArT

mr exp �Hr
T

� �
; r ¼ 1; . . . ;Nr ¼ 35, where Ar and mr are the

pre-exponential Arrhenius parameters and Hr is the characteristic
temperature of the activation energy. The corresponding backward
rate coefficient, kb,r, is obtained by kb,r = kf,r/KC,r where KC,r is the
equilibrium constant determined by the thermochemical database
[18]. We use the detailed chemical kinetic mechanism previously
verified in [3] to model the H2O profile behind the reflected shock
wave. This mechanism considers 35 elementary reactions and nine
species, O, H, H2, O2, OH, H2O, HO2, H2O2 and Ar.
The experimental data used in this paper was recently collected
at the High Temperature Gasdynamics Laboratory at Stanford Uni-
versity [3]. The data is composed of six profiles of the H2O concen-
tration history behind the reflected shock waves over the
temperature range 1100–1472 K. The detailed description of the
shock tube experiment is provided in [19]. The significance of these
measurements is that the temperature and pressure remain nearly
constant for a relatively long time (�ms) in the mixture behind the
reflected shock waves. Moreover, very careful calibration of the
measurements was performed in the laboratory, and the experi-
mental uncertainty for concentration measurements was relatively
small. Table 4 shows six experimental scenarios composed of the
gas temperature, T5 K, pressure, P5 atm, and percentage concentra-
tions of H2 and O2 behind the shock waves. Note that the reason
why we selected these six profiles is because it is necessary to
avoid using redundant information, which results in underestima-
tion of the uncertainties [20]. Besides, these data appear to have a
sufficient information for estimating four unknown parameters.
Ref. [19] reported uncertainties of 2rT5 ¼ 10:2 K for the low
(1000 K) temperature measurements and 2rT5 ¼ 9:4 K for the high
(1472 K) temperature measurements, as well as an uncertainty of
less than 1% in the gas composition.

4. Description of stochastic models

Table 3 summarizes the calibrating parameters and the irreduc-
ible uncertain parameters. In this study, we consider nine models:
Mi; i ¼ 1; . . . ;9. For model M1 and model M2, we perform the
parameter calibrations without considering any irreducible uncer-
tainties. (for the rest of study, model M1 is treated as a base case).
The numbers of the calibration parameters are 4 (h = (A1,m1,H1,r))
for model M1 and 10 (h = (A1,m1,H1,r, [H]i:i = 1, . . . , 6)) for model
M2. In model M2, the initial impurities of H in the gas are consid-
ered. Note Hong et al. [3] considered the small amount of H atom in
the gas to obtain the best fit to the data. Here, one of the objectives
is to check if there is any temperature dependence of the posterior
PDFs of H atom concentrations. In the rest of the models, we con-
sider h = (A1,m1,H1,r) and the irreducible uncertainties, hv, related
to the measurement time shift ðM3Þ, gas temperature/pressure
ðM4—M7Þ, and the other rate coefficients (M8 and M9). The mea-
surement time shift (denoted to Dts) may be a critical factor to
bring additional uncertainties in the calibration process (Dr. D.E.
Davidson, personal communication, July, 2011). We perform a
parametric study to investigate how the level of the uncertainty
in Dts affects the uncertainty in the rate coefficient k1. We test four
cases where we assign a Gaussian distribution with zero mean and



Table 3
Summary of the stochastic models.

Calibrating param. Irreducible uncertain param.

Model A1 m1 H1 r [H]i Dts T5 P5 T1 P1 V1 k24 k22

M1 U U U U – – – – – – – – –
M2 U U U U U – – – – – – – –
M3 U U U U – U – – – – – – –
M4 U U U U – – U – – – – – –
M5 U U U U – – – U – – – – –
M6 U U U U – – U U – – – – –
M7 U U U U – – – – U U U – –
M8 U U U U – – – – U U U U –
M9 U U U U – – – – U U U U U

Table 4
Experimental scenarios (O2/H2/Ar mixture) [3].

Index T5 (K) P5 (atm) [H2] (%) [O2] (%)

D1 1100 1.95 2.90 0.10
D2 1197 1.84 2.90 0.10
D3 1256 2.01 2.90 0.10
D4 1317 1.91 0.90 0.10
D5 1448 1.85 0.90 0.10
D6 1472 1.83 0.90 0.10
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the variance equal to rDts ¼ 5 ls, 10 ls, 20 ls, and 50 ls. For model
M4, we consider the post-shock gas temperature (T5) as irreducible
uncertainty. Based on the reported uncertainty of T5 by Hong et al.,
rT5 is set to 5 K. Similarly, model M5 considers the post-shock gas
pressure uncertainty that is rP5 equal to 0.01 atm. Then, model M6

takes account of both of them at the same time. In this case, we in-
put two Gaussian distributions of rT5 and rP5 without considering
the correlation among them. We call these parameters ‘‘uncorre-
lated’’ irreducible uncertainty parameters (see the top right corner
of Fig. 1). However, in reality, T5 and P5 are strongly correlated and
can be expressed by the well-known ideal shock relations, which
are the functions of the incident shock gas temperature, T1, velocity
V1 (or Mach number), and pressure P1. Therefore, it is more reason-
able to consider the uncertainties of T1, V1, and P1, and then to
propagate these uncertainties through the T5 and P5. In this case,
the resulting PDFs of T5 and P5 are no more Gaussian distributions
and correlated to each other (see the bottom right corner of Fig. 1).
The uncertainties of T1, V1, and P1 are set to rT1 ¼ 0:15 K,
rV1 ¼ 1:89� 10�3 km=s, and rP1 ¼ 3:29� 10�5 atom, respectively
[21]. These uncertainties give the same values for rT5 and rP5 .
The detailed uncertainty analysis for the calculated ideal shock
conditions immediately behind the reflected shock wave is pro-
vided at Appendix C in [21]. Finally, the uncertainties of other rate
coefficients are considered ‘‘uncorrelated’’ irreducible uncertainty
parameters. Based on the sensitivity analysis [3], we consider the
uncertainty of the rate coefficient of H + HO2 ? H2 + O2 (k24) in
M8 and set rk24 to 0.1 [16], which is expressed by log k. M9 addi-
tionally considers the uncertainty of the rate coefficient of
H + HO2 ? 2OH (k22), and rk22 is assigned to be 0.05 [16]. In this
case, the random variables associated with the irreducible uncer-
tainties are hv = (T1,P1,V1,k24,k22), which requires solving the five-
dimensional integration (see Eq. (4)). Significance of the proposed
methodology here is to take into account these uncertainties in a
mathematically consistent manner when solving the inverse
problem. Therefore, these uncertainties rigorously propagate
through the estimation of the uncertainty of QoIs.
Fig. 2. Experimental data from [3] and manufactured data. The solid lines represent
the 95% CI.
5. Results and discussion

In the numerical experiments shown below, the posterior PDFs
are sampled with the Markov Chain Monte Carlo method proposed
in [17]. For the calibration process we use up to 120,000 samples to
sweep the parameter spaces. Each whole calibration-prediction
process took less than 4 h on a modern serial Linux machine thanks
to the simplicity of the model. The current numerical methodology
is very efficient and feasible for various engineering applications
(e.g. [17,22,11,1]).
5.1. Calibration using the manufactured data

Before using actual experimental data, we verify that the pro-
posed inversion methodology works properly. In order to do so,
we use the physico-mathematical model to generate data by set-
ting the model parameters to their nominal values. Gaussian noise
is further inserted in the computed values. These data sets will be
referred to as ‘‘manufactured data’’ in the following. In this exer-
cise, we test the case using model M2. We assume that the initial
H concentrations decrease as the gas temperature increases. Fig-
ure 2 shows the experimental data (D1) from [3] and the manifac-
tured data. Due to our assumption that r2 is not a time dependent
variable and an additive error is likely to represent the current
problem, the 95% confidence interval (CI) is bounded by two solid
lines. Note that it is not realistic to presume that the uncertainties
in the measured H2O concentration in regions A (pre-ignition zone)
and C (post-ignition zone) are at the same level as for the measure-
ments within B [13]. We use the data only in region B where the
gradient of the profile is approximately constant. Figure 3 shows
the posterior PDFs of the model parameters of M2. We are able
to retrieve the nominal values indicated by the dashed lines. In-
deed, the data inform well enough Arrhenius parameters as well
as H concentrations in the sense that the resulting PDFs have small
variances. Therefore, we may conclude that the inverse problem is



Fig. 3. Posterior PDFs of the model parameters: (top left) log (A1), (top middle) m1, (top right) H1, and (bottom) H concentrations.
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correctly posed and that one should be able to identify the model
parameters.
Fig. 4. (top) 95% CI for log (k1) against 1000/T 1/K, the experimental data from
[23,24] and the reference curve fits from [3,25], and (bottom) percentage
uncertainty in k1 based on two standard deviations against 1000/T 1/K.
5.2. Calibration with the experimental data [3]

Figure 4 shows (top) the predicted 95% CI of k1 when using
model M1, as well as the experimental data from [23,24] and the
reference curve fits from [3,25], and (bottom) the percentage
uncertainty in k1 calculated based on two standard deviations
and the reported uncertainties (boxes) at T = 1500 K and 1100 K
[3]. The computed k1 agrees well with the value reported in [3]
and the experimental data within the experimental temperature
range used for calibration. However, the uncertainty is significantly
underestimated within the temperature range of the available
experimental data and increases in the high temperature region
(T > 2000 K). The reason why we underestimate the uncertainty
is related to the problem of this simple calibration procedure
(the detailed discussion about this issue is provided in our previous
study [13]) Note that even when we introduce more unknown ran-
dom variables subject to calibration (like model M2), this problem
is not resolved. This motivates us to perform the rest of study in or-
der to understand the importance of ‘‘irreducible’’ uncertainties.
On the other hand, the increase of uncertainty in the high temper-
ature region is related to the problematic nature of ‘‘extrapolation’’
of k1 in the high temperature regions using the calibrated model
(1100–1470 K).

Figure 5 shows the predicted 95% CI when using model M2. We
observe that H concentration significantly increases as the gas
temperature increases. This may be due to the remaining of H atom
from the previous experiments or possible vapor of H2O in the
shock-tube. Indeed, Hong et al. reported that the amount of H atom
artificially added during Lutz et al. [26] calculation exponentially
decreases as the gas temperature drops. In their calculation, they



Fig. 5. 95% CI for H concentration against 1000/T 1/K.
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considered 0.0012 ppm of H atoms to get a better agreement with
the data D1. The calculated uncertainty of k1 is almost the same as
the one shown in Fig. 4(bottom). The increase of calibrating param-
eter does not change the degree of uncertainty of k1 (not shown).

Next, we consider the uncertainty of the measured time-shift
and introduce it as ‘‘irreducible’’ uncertainty. There is no a priori
information about the degree of this uncertainty. Thus, we perform
parametric study of the measured time-shift and considered four
different values: rDts ¼ 5 ls, 10 ls, 20 ls, and 50 ls. Figure 6
shows the percentage uncertainty in k1 against rDts at four differ-
ent temperature, 1000 K (�), 1500 K (h), 2000 K (�), and 2500 K
(4). The dashed lines are the reported uncertainty computed
deterministically in [3]. Compared with the result using model
M1 equivalent to the case rDts ¼ 0 ls, the degree of uncertainties
significantly increases. Only 5 ls uncertainty in the measured
time-shift results in about 6% and 16% uncertainties at T = 1000 K
and 2500 K, respectively. The uncertainty monotonically increases
as the rDts increases. In this model, the reported uncertainties are
much closer to the calculated uncertainty. It is worth mentioning
that the reason why �s and hs are similar is because we have
the experimental data in this temperature range. This parametric
study shows high sensitivity of uncertainty of k1 to rDts .

In the next set of experiments, we introduce the uncertainty of
the gas temperature (T5) and pressure (P5) as ‘‘irreducible’’ uncer-
tainty. As previously explained, these two quantities are correlated
through the inflow scenarios: T1, P1 and V1. For a fair comparison
among the results using M4;M5;M6 and M7, we make sure that
the ‘‘correlated’’ PDFs of T5 and P5 have the similar variances to
the ‘‘uncorrelated’’ PDFs of T5 and P5. Figure 7 shows the resulting
Fig. 6. Percentage uncertainty in k1 based on two standard deviations against the
uncertainty of the measured time-shift, rDts .
correlated PDFs of T5 and P5 solving the reflected shock relation-
ships with the input of the uncorrelated PDFs of T1, P1, and V1. Even
though the variance of T5 at T = 1500 K is slightly larger than the
one at T = 1000 K, the result is satisfactory. Figure 8 shows the pre-
dicted 95% CI of k1 using (a) M4, (b) M5, (c) M6, and M7, and the
experimental data from [23,24]. For all models, the predicted log k1

agrees with the experimental data within the temperature range of
the data used in this study (1100–1472 K) even though these data
are ‘‘reduced’’ data, not ‘‘raw’’ data. Also, note there are also other
factors that affects the predictions such as model error included in
this study. When we consider only the uncertainty of gas temper-
ature as ‘‘irreducible’’ uncertainty, the gradient of log k1 becomes
steeper compared with the case of M1 (see Fig. 4) and as a result,
the discrepancy from the data becomes large in the high tempera-
ture region. On the other hand, Fig. 8b ðM5Þ shows the excellent
agreement with the data within the entire temperature range. It
is interesting that the predicted unceartainties for both case are
smaller in the high temperature region (above 1700 K) than the
one obtained by model M1, which is shown later in Fig. 10. This
will be discussed later in detail. In Fig. 8c and d, we observe that
the calculated uncertainties are much larger when compared to
Fig. 8a and b, and that there is negligible difference between these
two profiles. The combination of these two ‘‘irreducible’’ uncer-
tainties significantly enhances the uncertainty of k1 due to more
freedom in statistical dependence among the parameters. On the
other hand, to consider the correlation between T5 and P5 has a
negligible impact on the prediction of uncertainty in k1. The result-
ing marginal posterior PDFs of the Arrhenius coefficients are
shown in Fig. 9. We observe that there is a great agreement be-
tween the PDFs from model M6 and model M7 and that the vari-
ance in these PDFs remains larger than in the ones obtained by
model M4 and model M5. Considering the small uncertainty in
k1, the calculated large variance in the PDFs could seem surprising.
However, multiple combinations of three parameters result in sim-
ilar values of k1, i.e., they are strongly correlated with each other. A
non-zero value of m1 shown in Fig. 9b results in the large variation
of A1. Also, the predicted H1 varies from 7000 K to 11,000 K. We
conclude that it is difficult to capture the temperature dependence
of k1 using the current data, especially when considering multiple
‘‘irreducible’’ uncertainties.

Fig. 10 shows the percentage uncertainty estimated by models
M4—M9 and model M1 when not considering any ‘‘irreducible’’
uncertainties. We observe significant increase of uncertainties
within the temperature range available for the calibration data
when considering the ‘‘irreducible’’ uncertainties except model
M5. The overly underestimated uncertainty by model M5 is sur-
prising. This means that the uncertainty of pressure let the model
(a) (b) (c)

Fig. 7. PDFs of T5 and P5 calculated by the reflected shock relationships. The input
PDFs of T1, P1 and V1 are based on the report [21].



Fig. 10. Percentage uncertainty in k1 based on two standard deviations against
1000/T 1/K.

Fig. 11. Posterior PDFs of r2 for models M1, and M4—M9.

(a) (b)

(c) (d)

Fig. 8. 95% CI for log (k1) against 1000/T 1/K and the experimental data from
[23,24], (a) M4, (b) M5, (c) M6, and (d) M7.

Fig. 9. Posterior PDFs of A1, m1, H1 for models M4—M7.
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fit the data well without any adjustment of k1. On the other hand,
the introduction of the temperature uncertainty increases the
uncertainty in k1, �4% at 2000 K, and �2% at 1500 K. However, this
is still much less than the reported uncertainty (±4.6% at 1500 K
[3]). When we consider both the temperature and pressure uncer-
tainties (M6 and M7), we observe the uncertainty significantly in-
creases – i.e., �11% at 2000 K, ±4.2% at 1500 K, and ±7% at 1000 K),
which are much closer to the reported values [3]. Also, in these
cases, the uncertainty is appreciable even within the temperature
range of the available experimental data. However, when we take
into account the uncertainties from the rate coefficients of the
other reactions, H + HO2 ? H2 + O2 (k24) and H + HO2 ? 2OH
(k22), the predicted uncertainties drops. To understand this, the
marginal posterior PDFs of r2 are shown in Fig. 11. M1 shows
the largest value of r2 (�200 ppm). We observe that the introduc-
tion of any kind of ‘‘irreducible’’ uncertainties reduces r2. It is sur-
prising that the small amount of uncertainty of temperature
significantly reduces r2, in other words, the difference between
the data and the model outputs may be strongly related to the
gas temperature uncertainty. On the other hand, when compared
to other cases (M4—M7), M8 and M9 have relatively large values
of r2. The increase of r2 compensates the reduction of uncertainty
in k1, which is smaller than the one predicted by M6 (or M7).

From this exercise, we can see the complex stochastic depen-
dence of the uncertainties of k1 on the total modeling error, exper-
imental error, as well as ‘‘irreducible’’ uncertainties. It is worth
emphasizing that the introduction of ‘‘irreducible’’ uncertainties
does not always increase the uncertainty in k1. In the recent works
of Panesi et al. [1], the comprehensive uncertainty analysis for k1

was performed and the temperature-dependent uncertainty,
which is characterized by the uncertainty factor, f, defined as
f ¼ log10 k1ðTÞ=kmin

1 ðTÞ
� �

¼ log10 kmax
1 ðTÞ=k1ðTÞ

� �
, was provided.

Combining all available data (i.e., raw and reduced data), they ob-
tained f � 0.2 at 900 K, f � 0.14 at 1500 K, and f � 0.2 at 2700 K
based on 2r. It is misleading to directly compare our results with
theirs since our uncertainty estimation are provided only for the
data used in this analysis. However, it is interesting to see that
their study also shows the increase of uncertainty in k1 in the high
temperature region.

Finally, Fig. 12 shows the sensitivity analysis of the effect of the
‘‘irreducible’’ uncertainties on the uncertainty in k1 at three differ-
ent temperatures: (a) 1000 K, (b) 1500 K, and (c) 2000 K. For in-
stance, based on the uncertainty calculated by model M1, there
is �6% increase in uncertainty at T = 1000 K when introducing
the measured time-shift: rDts ¼ 5 ls. In general, we observe that
the absolute magnitude of uncertainties increases as the gas tem-
perature increases. Considering that the temperature range of the
data used in this study is 1100–1472 K, the ‘‘extrapolation’’ of k1

in the high temperature region using the calibrated model causes
the mode to be less constrained (i.e., more uncertain). The main



(a) (b) (c)

Fig. 12. Sensitivity analyses of the uncertainties in k1 against ‘‘irreducible’’ uncertainties at three different temperatures: (a) 1000 K, (b) 1500 K, and (c) 2000 K.
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effect on increasing the uncertainty is to introduce the uncertain-
ties of the measured time-shift and the combined effect of the
uncertainties of T5 and P5. On the other hand, the uncertainties of
P5, k24, and k22 indeed decrease the uncertainty in k1 at a certain
temperature. The reason why the uncertainty in k1 increases when
we consider both T5 and P5, but not when we individually consider
them is related to the assumption that we made during construc-
tion of M6 (T5 and P5 are uncorrelated).

We would like to provide further insights by comparing the
contribution of different uncertainties on the results obtained for
models M4- M6. Note there are four types of uncertainties consid-
ered in this study: experimental uncertainty and irreducible uncer-
tainty which are both fixed, and parametric uncertainty and
uncertainty due to model error (denoted by r) which are both sub-
ject to calibration.

Conditioned on model parameters, the total discrepancy be-
tween model predictions and experimental data is given by exper-
imental uncertainty, model error (given by r), and irreducible
uncertainty. Thus, if a specific total discrepancy is required by
the model, r is readjusted during calibration to match that discrep-
ancy in the presence of irreducible uncertainty. This explains the
decrease in r for models that account for irreducible uncertainty,
see Fig. 11. For example, the difference between r in model M1

and model M4 is due to the irreducible uncertainty in T5.
In addition to decreasing r, the irreducible uncertainty affects

the correlation between the model parameters (A,m,H). This ex-
plains why the sensitivities for M5 and M6 are opposite even
though the marginals for the parameters and r for both models
are the same, see Figs. 9 and 11. These correlations may induce
cancellations in the Arrhenius equation, and as a result a reduction
in the uncertainty of k. This is the case when comparing M1 and
M4/M5 which account for uncertainty in T5/P5. The irreducible
uncertainty induces correlations in the parameters that cancel
out in the Arrhenius equation, which explains the negative sensi-
tivities for M4 and M5. In the case of M6 , the irreducible uncer-
tainty of both T5 and P5 induces correlations in the parameters
that increase the uncertainty of k1 when propagated through the
Arrhenius equation. Thus the difference in the sensitivities be-
tween M4=M5 and M6 is due to the difference in the correlation
structure between model parameters.

This type of sensitivity analysis provides useful information for
improving the accuracy of uncertainty estimation of k1.

6. Conclusions

In this paper, we have used a Bayesian approach along with
experimental data recently obtained by Prof. Hanson’s research
group at Stanford University to quantify the uncertainty in the rate
coefficient of H + O2 ? OH + O. In the first stage, we have used the
manufactured data in order to examine whether the system of
interest was correctly posed and whether our methodology was
capable of retrieving model parameters as solution of the inverse
problem. In the second stage, we have constructed the nine sto-
chastic models depending on different choices of (‘‘irreducible’’)
uncertainties accounted for. The objective was in particular to ana-
lyze the sensitivity of the ‘‘irreducible’’ uncertainty parameters on
uncertainty of k1. One of our major observations is that the uncer-
tainty of the measured time-shift can significantly increase the
uncertainty. We also observe that to consider the correlation be-
tween the temperature and gas does not have appreciable impact
on the result of the uncertainty estimation. The proposed method
seems to be more accurate than a conventional ‘‘deterministic’’ ap-
proach in at least two aspects: it allows for the calibration of sev-
eral random model parameters with the possibility of evaluating
their stochastic dependence (e.g. evaluation of higher moments)
and it can rigorously consider a variety of uncertainties involved
in the calibration process.
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