УДК 541.64:546.26-162

ФУЛЛЕРЕНСОДЕРЖАЩИЕ ПОЛИМЕТАКРИЛАТЫ РАЗВЕТВЛЕННОГО СТРОЕНИЯ И ПОЛИМЕРНЫЕ СЕТКИ. СИНТЕЗ, СТРУКТУРА, СВОЙСТВА

© 2011 г. С. В. Курмаз, В. В. Ожиганов

Учреждение Российской академии наук Институт проблем химической физики РАН 142432 Черноголовка Московской обл., пр. акад. Семенова, 1 Поступила в редакцию 19.04.2010 г.

Принята в печать 18.10.2010 г.

Получены разветвленные полиметилметакрилаты, содержащие ковалентно и нековалентно связанный фуллерен C_{60} . С помощью ИК- и УФ-спектроскопии исследовано их строение. Сопоставлены основные физико-химические характеристики разветвленного полиметилметакрилата, включающего ковалентно связанный фуллерен, и нефункционализированного разветвленного полимера того же состава. Изучено влияние фуллеренсодержащих полиметилметакрилатов разветвленного строения на кинетику трехмерной радикальной полимеризации диметакрилата 1,6-гександиола и структурно-физические (физико-механические, термомеханические, диффузионно-сорбционные) свойства образующихся полимеров. Установлена роль фуллерена, присоединенного в разветвленный полиметилметакрилат, как ингибитора трехмерной радикальной полимеризации диметакрилата и модификатора структуры и свойств образующихся полимеров.

ВВЕДЕНИЕ

Получение новых полимерных материалов, объединяющих свойства фуллерена С₆₀ и полимеров, — одна из актуальнейших задач современной науки, решение которой открывает широкие возможности для развития технологий. Модификация полимеров достигается посредством их ковалентного и нековалентного связывания с молекулами фуллерена [1]. Реакции фуллерена и его производных с полимерами обеспечивают ковалентное присоединение реагентов. Однако этот способ получения фуллеренсодержащих полимеров характеризуется многостадийностью и сложностью проведения реакций. Оказалось [2], что радикальная полимеризация виниловых и аллиловых мономеров в растворе, содержащем С₆₀, также является эффективным способом синтеза фуллеренсодержащих полимеров. Преимуществами такой полимеризации являются простота, одностадийность и возможность применения широкого круга виниловых мономеров.

Полимеры, содержащие нековалентно связанный фуллерен, получают выделением из общего раствора полимера и фуллерена в органическом растворителе или путем их твердофазного взаимодействия [3]. Так были получены комплексы C_{60} с поливинилпирролидоном [4], полифениленоксидом [5], композиты C_{60} с ПММА [6] и ПС [7]. Эти полимерные продукты часто идентифицируют как комплексы, в которых C_{60} (π -акцептор) связывается с полимером за счет донорно-акцепторных взаимодействий, и как композиты, в которых молекулы фуллерена относительно равномерно распределены в полимере [7].

В последние десятилетия в центре внимания исследователей находятся разветвленные (со)полимеры [8]. Повышенный интерес к ним обусловлен, прежде всего, их необычными свойствами, вытекающими из их строения. Разветвленные полимеры имеют большое по сравнению с линейными аналогами количество концевых полимерных цепей в периферической зоне и компактную глобулярную структуру в растворах. Благодаря необычной топологии они обладают высокой растворимостью в органических средах, хорошей совместимостью с различными полимерами, низкими значениями характеристической вязкости в растворах и расплавах по сравнению с линейными полимерами той же ММ, избыточным свободным объемом и способностью сорбировать вещества внутри макромолекул по типу "хозяин-гость". Включение молекул С₆₀ в структуру разветвленных полимеров путем ковалентного и нековалентного связывания будет способствовать приданию им нового комплекса полезных свойств и откроет новые перспективы в их применении в качестве материалов с электрическими, магнитными и оптическими характеристиками.

E-mail: skurmaz@icp.ac.ru (Курмаз Светлана Викторовна).

Контролируемая передатчиком цепи радикальная сополимеризация виниловых мономеров с мультифункциональными сомономерами в растворе, насыщенном фуллереном, - прямой путь к получению разветвленных полимеров посредством ковалентного связывания с C₆₀ in situ, а выделение полимерного продукта из общего раствора разветвленных сополимеров и фуллерена способ получения разветвленных полимеров с нековалентно связанным фуллереном. В последнем случае полимерный продукт, вероятно, представляет собой комплекс типа "хозяин-гость", в котором макромолекулы разветвленного сополимера служат своеобразным полимерным контейнером, т.е. оболочкой для "гостевых" молекул фуллерена, сорбируемых в микрополостях и удерживаемых за счет донорно-акцепторных или ван-дер-ваальсовых взаимодействий. О наличии в разветвленных полимерах, полученных по методу [9], полостей подходящего размера и формы свидетельствует их способность сорбировать и удерживать молекулы красителя [10]. Типичным примером макромолекул необычного строения, имеющих большие внутренние полости и образующих в процессе иммобилизации молекул фуллерена супрамолекулярные комплексы по типу "хозяин-гость", служат дендримеры [11].

Известно [1], что фуллерен является эффективным наномодификатором; его малые добавки существенно улучшают эксплуатационные свойства полимеров различной химической природы. Однако сведения о модификации фуллереном сетчатых полимеров, в частности полидиметакрилатов, весьма ограничены. Причины – сложность синтеза сетчатых полимеров, содержащих ковалентно связанный фуллерен, с помощью трехмерной радикальной полимеризации мультифункциональных мономеров в массе и трудность получения полимерных композитов на основе сетчатых полимеров путем допирования, т.е. механического введения фуллерена. Нерастворимость фуллерена в метакриловых мономерах и сетчатых полидиметакрилатов в органических средах делает эти способы введения фуллерена неприемлемыми. Допирование фуллереном полидиметакрилатов по аналогии с сетчатым ПС [12] возможно путем смешивания раствора фуллерена в толуоле и набухшего сетчатого полимера в толуоле с последующим высушиванием.

В данной работе для решения задачи функционализации фуллереном полимерных сеток на основе диметакрилатов предлагается использовать разветвленные полиметилметакрилаты с ковалентно (ФПММА*) и нековалентно связанным фуллереном (ФПК). Полимерные сетки, содержащие наномодификатор, могут быть получены в ходе радикальной полимеризации диметакрилата в присутствии ФПММА* и ФПК. Входящий в состав ФПММА* и ФПК фуллерен, имеющий кратные связи, может служить источником формирования новых узлов химической сетки, оказывать влияние на концентрацию и время жизни узлов физической сетки и структурно-физические свойства образующегося полимера.

Цель данной работы — получение фуллеренсодержащих разветвленных полиметакрилатов с ковалентно и нековалентно связанным фуллереном и изучение их влияния на кинетику трехмерной радикальной полимеризации диметакрилата 1,6гександиола (ДМГД), структуру и свойства (физико-механические, термомеханические, диффузионно-сорбционные) образующихся полимерных сеток.

Для выявления специфической роли фуллерена также в работе сопоставлены результаты исследования кинетики трехмерной радикальной полимеризации ДМГД в присутствии разветвленного полиметилметакрилата (ПММА*) и его фуллеренсодержащих аналогов, структуры и свойств образующихся полимеров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ПММА* был получен радикальной сополимеризацией ММА с диметакрилатом триэтиленгликоля (ДМТЭГ) в толуоле в присутствии эквимольного количества относительно диметакрилата агента передачи цепи – 1-декантиола по методу, описанному в работе [9]. Мольное соотношение ММА-ДМТЭГ в разветвленном сополимере составляет 100 : 21. Для получения ФПММА* полимеризацию реакционной смеси ММА-ДМТЭГ-1-декантиол с мольным соотношением компонентов 100 : 21 : 21 проводили в растворе толуола, содержащем 0.7 г/л С₆₀. Условия получения ПММА* и ФПММА* идентичны: инициатор ДАК (0.02 моль/л); растворитель толуол (~80%); температура синтеза 80° C; время синтеза 5.5 ч.

Сополимеры ПММА* и ФПММА* выделяли путем их осаждения из раствора в толуоле 10-кратным избытком гексана и сушили до постоянной массы. Выход ПММА* и ФПММА* составлял 66.2 и 65.7% соответственно. По данным абсорбционной спектроскопии, фуллерен полностью расходуется в радикальном процессе. Об этом свидетельствует отсутствие в УФ-спектре полимерного продукта, выделенного путем испарения толуола, полос поглощения свободного фуллерена. С учетом выхода ФПММА* и концентрации C_{60} в растворе содержание C_{60} в ФПММА*

ФПК получали путем механического смешивания растворов ПММА* и фуллерена в толуоле с последующем удалением растворителя. Концентрация фуллерена в толуоле 0.7 г/л. Содержание C_{60} в ФПК составляло 1.2%.

Методом ГПХ с помощью жидкостного хроматографа "Waters GPCV 2000" (2 колонки PL-gel, 5 мкм, MIXED-C, 300×7.5 мм), снабженного дифференциальным рефрактометром, находили молекулярную массу ПММА*, ФПММА* и полимеров, выделенных из золь-фракций полимеров ДМГД. Для расчета ММ использовали калибровочные зависимости для ПС-стандартов. Абсолютные молекулярно-массовые характеристики определяли методом ГПХ в сочетании со светорассеянием, применяя детектор светорассеяния "Wyatt Dawn Heleos II" ($\lambda = 658$ нм). Инкремент показателя преломления dn/dc = 0.114 мл/г. Элюентом в обоих случаях был стабилизированный ТГФ. Температура измерений составляла 35°С, скорость элюирования 1 мл/мин. Полученные данные обрабатывали с помощью программного обеспечения "Empower Pro" и "Astra".

Методами УФ- и ИК-спектроскопии исследовали строение ПММА*, ФПММА* и ФПК. В первом случае образцами были растворы сополимеров в хлороформе, во втором — пленки, отлитые из раствора в хлороформе. УФ- и ИК-спектры регистрировали на приборе "Specord M40" и "Specord M80" соответственно.

Температуру стеклования T_c ПММА*, ФПММА* и ФПК измеряли посредством дифференциального сканирующего калориметра "Mettler Toledo" при скорости нагревания 5 град/мин. Характеристическую вязкость [η] ПММА* и ФПММА* в толуоле определяли при 20°С на вискозиметре ВПЖ-2. Содержание остаточных связей C=C в ПММА* и ФПММА* находили методом озонолиза [13] на анализаторе двойных связей АДС-4М.

Кинетику полимеризации ДМГД в массе в присутствии 0-40 мас. % ФПММА* и ФПК исследовали методом прецизионной изотермической калориметрии на приборе ДАК-1-1. Инициатором служил ДАК (6.4×10^{-3} моль/л). Реакционную смесь дозировали в стеклянные ампулы, вакуумировали и отпаивали. Кинетику полимеризации диметакрилата изучали в присутствии $(3-4) \times 10^{-4}$ моль/л ТЕМПО, чтобы предотвратить полимеризацию реакционных смесей. Тепловыделение регистрировали после окончания индукционного периода. Конверсию связей С=С и приведенную скорость полимеризации w/[M] рассчитывали на диметакрилат, используя мольную теплоту полимеризации его монофункционального аналога ММА, равную 58.8 кДж/моль, по известной методике [8].

Выполняли золь-гель-анализ полимеров ДМГД с различными добавками ФПММА*. Образцы полимеров экстрагировали кипящим бензолом в течение 20 ч при 80°С в аппарате Сокслета, затем сушили при комнатной температуре до постоянной массы. Содержание гель- и зольфракций в образце определяли весовым методом.

Модуль упругости E_1 и модуль в области вынужденной эластичности Е2 полидиметакрилатов с добавками ФПММА* и ФПК находили из зависимостей деформация-напряжение, измеренных в режиме одноосного сжатия при малой скорости деформирования $d\epsilon/dt = 1 \times 10^{-4} \text{ c}^{-1} \text{ с}$ помощью высокоточного динамометра рычажного типа, предназначенного для мини-образцов (~0.1 г). Температуру стеклования полимеров с добавками ФПММА* и ФПК определяли из термомеханических кривых, измеренных на установке УИП-62-М при скорости нагревания 2.5 град/мин и постоянной нагрузке σ . Методика нахождения T_c описана в работе [14]. Диффузионно-сорбционные свойства полимеров ДМГД, полученных в присутствии ФПММА* и ФПК, изучали в парах бензола при атмосферном давлении и 20°С. Для измерений использовали цилиндрические образцы полимеров высотой ~5 и диаметром ~2.5 мм.

В работе исследовали особенности структуры и свойств полидиметакрилатов с добавками ФПММА* и ФПК, подвергнутых процедуре отжига—дополимеризации в режиме ступенчатого подъема температуры от 70 до 120°С в вакууме. Такую обработку проводили с целью снятия внутреннего напряжения в образцах и повышения конверсии связей C=C. Последнюю определяли с помощью ИК-спектроскопии по методу [15].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Строение и физико-химические характеристики ФПММА* и ФПК

При синтезе ФПММА* содержание С₆₀ в растворе не превышает ~1 × 10⁻³ моль/л. Тем не менее фуллерен, участвующий в радикальных реакциях, может оказывать существенное влияние на топологическую структуру и состав образующихся полимерных продуктов. Основанием для этого утверждения служат многочисленные реакции, протекающие в присутствии фуллерена. Так, при инициируемой ДАК полимеризации стирола и ММА в растворе наряду с традиционными реакциями роста и обрыва полимерных цепей протекает ряд специфических реакций радикалов с фуллереном [16]. Среди них присоединение С₆₀ к радикалам инициатора R^* и полимера $R(M)_n^*$, обрыв радикалов инициатора и полимера на радикалах алкилзамещенных производных С_{60.} обрыв путем взаимодействия фуллереновых радикалов, а также участие в реакциях роста и обрыва молекул C_{60} , существующих в виде кластеров $(C_{60})_x$. Присоединение радикалов $R(M)_n^*$ по нескольким

D

активным центрам молекулы C₆₀ приводит к образованию полиалкилфуллеренов.

Обращает на себя внимание реакция радикалов ДАК, образующихся при термическом распаде инициатора, с молекулами фуллерена [17, 18]:

$$I \rightarrow 2R^*$$
$$R^* + C_{60} \rightarrow RC_{60}^*$$
$$R^* + RC_{60}^* \rightarrow R_2C_{60}$$

В результате такого взаимодействия в растворе *о*-дихлорбензола образуются три изомера. Если скорость взаимодействия цианопропильных радикалов с C_{60} оказывается выше, чем скорость взаимодействия растущих полимерных радикалов с инициатором, то полимеризация резко замедляется и даже останавливается вследствие падения скорости инициирования.

Синтез ФПММА*, очевидно, также сопровождается множеством реакций радикалов инициатора и полимера с С₆₀. Причем выход полимерного продукта сопоставим с выходом ПММА*. Это означает, что сополимеризация ММА с ДМТЭГ протекает с высокой скоростью и ее закономерности определяют особенности формирования молекулярной структуры ФПММА* и его состав.

Макромолекулы содержат ковалентно связанный фуллерен. Об этом свидетельствуют данные электронной спектроскопии. На рис. 1а приведен электронный спектр С₆₀ в хлороформе в области 250-750 нм. Он представляет собой две группы полос поглощения (рис. 1а, кривые 1 и 2), обозначаемые как ρ - ($\lambda = 330$ и 407 нм) и β -полосы при $\lambda = 533$ и 595 нм [2]; при $\lambda \sim 260$ нм присутствует широкая бесструктурная полоса поглощения (рис. 1а, кривая 3). В области 250-300 нм в УФ-спектре исходного ПММА* находится широкая полоса поглощения, представляющая собой суперпозицию нескольких полос при λ_{*max*} ~ 271, 277 и 283 нм (рис. 16, кривая *1*). Ее появление связано, вероятно, с $n \rightarrow \pi^*$ переходом в карбонильной группе разветвленного сополимера [19]. УФ-спектр ФПММА* (рис. 16, кривая 2) представляет собой набор нескольких перекрывающихся полос поглощения при $\lambda \sim 257, 264$ и 270 нм. Это может быть обусловлено как смещением полосы поглощения $n \to \pi^*$ карбонила в коротковолновую область, так и появлением колебательной структуры полосы поглощения фуллерена при $\lambda_{max} \sim 260$ нм в результате нарушения общей фуллереновой системы π-связей при присоединении радикалов к ядру фуллерена [20]. Отсутствие других полос поглощения свободного фуллерена в УФ-спектре ФПММА*, а также дополнительное поглощение при λ > 300 нм указывает на включение фуллерена в состав полимерных цепей. Если

Рис. 1. а: УФ-спектры C_{60} в хлороформе. $[C_{60}] = 4.5 \times 10^{-4}$ (1), 5.7 × 10⁻⁵ (2) и 2.9 × 10⁻⁵ моль/л (3); 6: УФспектры ПММА* (1), ФПММА* (2) и ФПК (3) в хлороформе. [ПММА*] = 1.7 г/л, [ФПММА*] = 0.8 г/л, [ФПК] = 0.21 г/л.

полимерные радикалы присоединяются по нескольким центрам C_{60} , то образуются звездообразные макромолекулы. Лучи, исходящие от фуллеренового ядра, могут быть не только линейного, но и разветвленного строения. Таким образом, макромолекулы ФПММА*, полученные в присутствии C_{60} , скорее всего, имеют более сложную структуру по сравнению с исходным ПММА* и содержат наряду с линейными, разветвленными и сверхразветвленными макромолекулы звездообразного строения. В УФспектре ФПК, как и следовало ожидать, присутствуют полосы свободного фуллерена (рис. 16, кривая 3).

О строении ФПММА* и ФПК также судили по данным ИК-спектроскопии. На рис. 2 приведены ИК-спектры ПММА*, ФПММА* и ФПК. Из их

Рис. 2. ИК-спектры ПММА* (1), ФПММА* (2) и ФПК (3) в области 400–2000 см⁻¹.

анализа следует, что включение C_{60} в полимерные цепи разветвленного сополимера не влияет на его молекулярную структуру. Об этом свидетельствует отсутствие существенных различий в ИК-спектрах ПММА* и ФПММА*. Обращает на себя внимание некоторое изменение в конформационно-чувствительной области колебаний группы – COOR в диапазоне 1100–1300 см⁻¹. Встраивание С₆₀ в полимерные цепи приводит к появлению полосы поглощения гош-изомера при $v \sim 1172 \text{ см}^{-1}$, отличающегося углом поворота вокруг связи С-О на ~60° от *цис*-изомера при v ~ 1190 см⁻¹. При этом отношение оптической плотности полос поглощения при v ~ 1240 и 1270 см⁻¹, связанных с вращением вокруг связи С-С, практически не изменяется.

В ИК-спектрах ФПК полосы поглощения полимера также остаются неизменными и появляются полосы поглощения свободного C_{60} при v = 527 и 575 см⁻¹ [21]. Это указывает на присутствие молекул C_{60} в ФПК в несвязанной форме.

В процессе растворения молекулы фуллерена диффундируют в подходящие по размерам полости разветвленного сополимера, распределяясь как внутри них, так и в межмолекулярном пространстве разветвленного сополимера и удерживаются за счет ван-дер-ваальсовых взаимодействий. Однако по мере испарения растворителя происходят осаждение фуллерена и его агрегация. Таким образом, в ФПК фуллерен присутствует, вероятно, в кластерной форме (C₆₀)_x. Кроме того, в органических растворителях (толуоле, бензоле и пр.) С₆₀ образует устойчивые молекулярные комплексы (сольватокомплексы) [22]. С учетом способа получения ФПК фуллерен с толуолом, возможно, также связаны в молекулярный комплекс, который со временем разрушается в результате испарения толуола, о чем свидетельствует изменение окраски ФПК.

На рис. 3 представлены хроматограммы ПММА* и ФПММА*, полученные методом ГПХ. Видно, что хроматографические кривые исходного ПММА* и ФПММА* носят полимодальный

Полимер	$M_n \times 10^{-3}$	$M_w imes 10^{-3}$	M_w/M_n	$T_{\rm c}$, °C	[С=С], моль/кг	[η], дл/г
ПММА*	4.4/4.0	14.2/17.2	3.2/4.3	34.3	0.86	0.053
ФПММА*	4.2/6.1	13.9/19.2	3.4/3.2	34.2	0.83	0.057

Таблица 1. Физико-химические параметры ПММА* и ФПММА*

Примечание. В числителе – данные ГПХ, в знаменателе – данные ГПХ со светорассеянием.

Рис. 3. Хроматограммы ПММА* (1) и ФПММА* (2).

характер и практически полностью совпадают. Это указывает на слабое влияние С₆₀ на длину полимерных цепей в радикальной сополимеризации ММА с ДМТЭГ, которая определяется константами скорости роста, обрыва и передачи цепи. В табл. 1 приведены молекулярно-массовые характеристики ПММА* и ФПММА*. Молекулярные массы ПММА* и ФПММА*, найденные ГПХ в сочетании со светорассеянием, оказываются более высокими, чем измеренные обычным методом. Это обусловлено различием гидродинамического объема линейных и разветвленных макромолекул. Калибровочные зависимости молекулярной массы от времени удерживания для линейных стандартов приводят к заниженным ММ для разветвленных полимеров [8]. В случае ФПММА* различия в ММ также могут быть вызваны агрегацией макромолекул, содержащих C_{60} , в полярном элюенте ТГФ, а также их более разветвленным характером. Следствием этого, по-видимому, является увеличение молекулярной массы ФПММА*, измеренных методом ГПХ в сочетании со светорассеянием.

В табл. 1 приведены другие физико-химические характеристики ФПММА* по сравнению с таковыми для ПММА*. Включение фуллерена в структуру сополимера, как следует из приведенных данных, не влияет на величину характеристической вязкости [η]. Она практически не изменяется. Зависимость приведенной вязкости от концентрации полимера в растворе также мало изменяется: тангенс угла наклона снижается от 4×10^{-3} до 2.9×10^{-3} , вероятно, в результате увеличения степени разветвления макромолекул ФПММА*, а также их доли в полимерном продукте. Константа Хаггинса *k*' падает от 1.42 до 0.89, т.е. увеличивается степень набухания клубков фуллеренсодержащего полимера в толуоле, вероятно, вследствие возрастания термодинамического сродства с растворителем благодаря включению молекул фуллерена.

Содержание связей С=С в ФПММА* по сравнению с таковым в ПММА* изменяется незначительно. Специальные исследования показали, что фуллерен в растворе озонируется, причем в реакцию с озоном вступают не более 25% его двойных связей. С учетом малого содержания фуллерена в полимерных цепях и частичного озонирования его вклад в измеренную концентрацию связей С=С в ФПММА* незначителен. Озонируемые связи представляют собой, в основном, "подвешенные" связи С=С ДМТЭГ.

Включение молекул фуллерена в структуру ПММА*, как следует из данных табл. 1, не влияет и на T_c сополимера. Она, как и в случае ПММА*, определяется высокой концентрацией концевых цепей и неоднородностью макромолекул по составу.

Таким образом, ковалентное связывание C_{60} с полимерными цепями не оказывает значительного влияния на физико-химические параметры ФПММА*. Следовательно, процесс формирования структуры ФПММА* контролируется, главным образом, реакциями радикальной сополимеризации ММА с ДМТЭГ и передачей цепи метакрильных радикалов на 1-декантиол. Присоединение C_{60} к макромолекулам разветвленного сополимера осуществляется, по-видимому, за счет взаимодействия полимерных радикалов $R(M)_n^*$ и кратных связей C_{60} :

$$R(M)_n^* + C_{60} \rightarrow R(M)_n C_{60}^*$$

Рис. 4. Кинетика полимеризации ДМГД в присутствии 0 (1), 5 (2), 10 (3), 20 (4), 30 (5) и 40 мас.% (6) ФПММА* (а) и в присутствии 5 (1), 10 (2), 20 (3) и 30 мас. % (4) ФПК (6). $T = 60^{\circ}$ С, инициатор ДАК (6.3 × 10⁻³ моль/л).

обрыва радикалов полимера на радикалах алкилзамещенных производных C₆₀:

$$R(M)_n C_{60}^* + R^* \rightarrow R(M)_n C_{60} R$$

$$R(M)_n C_{60}^* + R(M)_n^* \rightarrow [R(M)_n]_2 C_{60},$$

а также обрыва путем взаимодействия полимерфуллереновых радикалов:

$$R(M)_{n}C_{60}^{*} + RC_{60}^{*} \rightarrow R(M)_{n}C_{60} - C_{60}R$$
$$2R(M)_{n}C_{60}^{*} \rightarrow R(M)_{n}C_{60} - C_{60}(M)_{n}R$$

Полимерные сетки, полученные в присутствии ФПММА* и ФПК

Трехмерная радикальная полимеризация ДМГД в присутствии ФПММА* и ФПК. Высокое сродство между ФПММА*, ФПК и ДМГД обеспечивает образование термодинамически устойчивых растворов. Реакционные смеси ДМГД с добавками ФПММА* и ФПК представляют собой однофазные системы, в которых отсутствует граница раздела. Обращает на себя внимание различие в окраске растворов ДМГД с ФПММА* и ФПК. В первом случае они окрашены в оттенки желтокоричневого цвета, тогда как во втором — имеют малиново-вишневую окраску. Другая окраска раствора ДМГД с ФПК может быть обусловлена образованием молекулярных комплексов C_{60} с мономером ДМГД.

На рис. 4 представлены кинетические кривые полимеризации ДМГД в присутствии различной концентрации ФПММА* и ФПК в координатах приведенная скорость полимеризации w/[M]конверсия С. Видно, что при введении ФПММА* максимальная приведенная скорость полимеризации существенно снижается (рис. 4a, кривые 1-6). Это свидетельствует об уменьшении масштаба автоускорения, обусловленного диффузионным контролем реакции обрыва полимерных цепей [8]. Положение максимума приведенной скорости изменяется незначительно. Добавление той же концентрации ПММА* в реакционную смесь также сопровождается уменьшением максимальной приведенной скорости полимеризации [23]; при добавлении 10-30 мас. % ПММА* максимум скорости смещается в область меньшей конверсии. Это свидетельствует об ускорении начала процесса структурообразования в реакционной системе при одновременном снижении его масштаба. Таким образом, в отличие от добавок ПММА*, добавки ФПММА* не влияют на начало формирования сетчатой структуры, но подавляют его масштабы. Предельная конверсия связей С=С при полимеризации ДМГД в присутствии ФПММА* возрастает. Это означает, что в результате снижения диффузионных ограничений подвижность молекул ДМГД и "подвешенных" связей С=С, присоединенных к каркасу полимерной сетки, на протяжении полимеризационного процесса сохраняется высокой.

При высокой концентрации ФПММА* (30– 40 мас. %) в смеси с ДМГД, как и в присутствии ПММА* [23], форма кинетических кривых существенно трансформируется: при малых конверсиях (C < 10%) появляются участки с постоянной приведенной скоростью. При содержании ФПММА* 40% в смеси трехмерная полимеризация к тому же носит ступенчатый характер.

Значительно более сильное влияние на кинетику полимеризации ДМГД оказывают добавки ФПК (рис. 4б). Величина $(w/[M])_{max}$ уже при малых добавках ФПК (5 мас. %) снижается в ~6.5 раз по сравнению с величиной $(w/[M])_{max}$, наблюдае-

мой при полимеризации ДМГД (рис. 4а, кривая 1). Добавка ФПК снижает (w/[M])_{max} при полимеризации ДМГД более чем в 5 раз сильнее, чем такая же добавка ФПММА*. Сильное ингибирование полимеризации ДМГД добавками ФПК, возможно, обусловлено как более высоким содержанием фуллерена, так и его присутствием в ФПК в свободной форме, которая более активна в качестве ингибитора. Как и в случае ФПММА*, добавки ФПК подавляют гель-эффект, а также связанный с ним процесс формирования и роста микрогелевых частиц. Обращает на себя внимание снижение предельной конверсии связей С=С при полимеризации ДМГД в присутствии 20-30 мас. % ФПК, характерное для ингибированной полимеризации диметакрилатов [8].

Наблюдаемые кинетические эффекты при полимеризации ДМГД в присутствии ФПММА* и в большей степени ФПК, скорее всего, обусловлены ингибирующим действием С₆₀, а также некоторым снижением скорости инициирования вследствие реакции между С₆₀ и радикалами инициатора [16-18]. В результате взаимодействия полимерных радикалов R(M)^{*} и кратных связей свободного или встроенного в полимерные цепи фуллерена, обрыва радикалов полимера на радикалах алкилзамещенных производных и обрыва путем взаимодействия полимер-фуллереновых радикалов [16] появляются дополнительные узлы химической сетки, центром которых являются ядра фуллерена. Изменения в кинетике трехмерной радикальной полимеризации ДМГД в присутствии добавок ФПММА* и ФПК обусловлены, по-видимому, участием "подвешенных" связей С=С ПММА*, входящего в состав ФПК и ФПММА*, в радикальной полимеризации с ДМГД, а также влиянием вязкости на элементарные константы скорости.

Обогащенные фуллереном макромолекулы разветвленного сополимера в среде полярного мономера ДМГД могут образовывать ассоциаты различных размеров. Так, на примере комплексов поливинилпирролидона с фуллереном показано, что в полярной среде – воде гидрофобное связывание фуллеренов конкурирует с гидрофильным отталкиванием макромолекул и приводит к сильным межмолекулярным взаимодействиям [24]. При прохождении света с $\lambda \sim 650$ нм через растворы ДМГД с ФПММА* и ДМГД с ФПК наблюдается его более сильное рассеивание, чем в растворах ДМГД с соответствующими добавками ПММА*. Это указывает на присутствие в растворе ассоциированных макромолекул с диаметром ассоциатов меньше длины волны проходящего света. Таким образом, ингибированная радикальная полимеризация ДМГД и формирование сетчатого полимера в присутствии ФПММА* и ФПК протекает в своеобразных нанореакторах - агреТаблица 2. Результаты золь-гель-анализа ПДМГД, полученных в присутствии добавок ПММА*, ФПММА* и ФПК

Добавка	Содержание	Содержание фракции, %		
	добавки, мас. 70	Гель	Золь	
_	0	92.0	7.5	
ПММА* [23]	10	95.0	3.6	
	20	83.4	19.0	
	30	74.0	25.4	
	40	69.0	32.3	
ФПММА*	10	96.8	3.0	
	20	86.6	15.1	
	30	85.2	17.1	
	40	75.4	27.5	
ФПК	10	97.2	0.9	
	20	85.5	14.8	
	30	73.0	26.4	

гатах макромолекул, содержащих фуллерен. Подвижные полимерные радикалы малых размеров легко диффундируют в агрегаты макромолекул ФПММА* и ФПК и обрываются на молекулах C_{60} , содержащихся в свободной форме в ФПК или присоединенных к макромолекулам ПММА*. Присоединение радикалов инициатора и полимера к молекулам фуллерена, очевидно, повышает его растворимость в реакционной системе. Короткие фуллеренсодержащие макромолекулы, имеющие высокую подвижность, легко диффундируют в объем и распределяются в нем.

Структурно-физические особенности полимеров **ДМГД с добавками ФПММА* и ФПК.** Об особенностях структуры полимеров ДМГД с добавками ФПММА* и ФПК судили по результатам их зольгель-анализа (табл. 2). Отклонение суммы гель- и золь-фракций от 100% может быть вызвано погрешностями эксперимента. Гель-фракции окрашены в зависимости от содержания ФПММА* и ФПК в различные оттенки коричневого цвета. Это свидетельствует о включении фуллеренсодержащих макромолекул с разным типом связывания фуллерена в состав полимерной сетки. Растворы золь-фракций полимеров ДМГД с добавками ФПММА* в ТГФ имели желтую окраску, указывающую также на присутствие связанного с полимером фуллерена.

Из данных табл. 2 видно, что с ростом содержания ФПММА* и ФПК в полимерах ДМГД, как и в случае ПММА*, доля золь-фракции увеличи-

Содержание	Конверсия связей С=С, %			
добавки, мас. %	ПММА*	ΦΠΜΜΑ*	ФПК	
0	65.8	65.8	65.8	
10	68.6	72.4	63.3	
20	76.5	76.5	63.7	
30	77.0	76.7	66.9	
40	84.4	83.4	_	

Таблица 3. Конверсии связей C=C в полимерах ДМГД с добавками ПММА*, ФПММА* и ФПК

вается. Это обусловлено увеличением количества макромолекул, инертных в трехмерной радикальной полимеризации, с ростом содержания этих добавок в полимере ДМГД. Между тем доля гельфракции в ПДМГД с добавками ФПММА* несколько выше, чем в ПДМГД с теми же добавка-

Рис. 5. Хроматограммы продуктов, выделенных из золь-фракций полимеров ДМГД. а: 1, 2 – с добавками 30 и 40 мас. % ФПММА* соответственно; 3 – хроматограмма ФПММА*; 6: ПДМГД с добавками 10 (1), 20 (2) и 30 мас. % (3) ФПК; 4 – хроматограмма ПММА*.

ми ПММА*. Различие тем заметнее, чем больше содержание ФПММА* в полимере. Так, при содержании 30% ФПММА* в полимере оно может достигать ~10%. Согласно данным ИК-спектроскопии, полимеры ДМГД с добавками ПММА* и ФПММА* имеют близкие конверсии (табл. 3). Следовательно, увеличение доли гель-фракции вызвано участием ковалентно связанного с полимерными цепями фуллерена в полимеризации ДМГД (за счет его доступных для взаимодействия кратных связей) и появлением новых дополнительных узлов химической сетки. Примечательно, что доли гель-фракции в полимерах ДМГД с добавками ПММА* и ФПК сопоставимы, несмотря на различия в конверсии связей С=С. Это указывает на участие фуллерена, входящего в состав ФПК, в образовании узлов химической сетки.

Из анализа хроматографических кривых исходного ФПММА* и золь-фракции (рис. 5а) следует, что полимеры в золь-фракции представляют собой низкомолекулярную составляющую ФПММА*. Высокомолекулярные компоненты ФПММА* участвуют в радикальной полимеризации с ДМГД. Молекулярно-массовые характеристики золь-фракций полимеров ДМГД с добавками ФПММА* приведены в табл. 4. Как видно, они в ~2 раза меньше, чем у исходного ПММА*.

На рис. 5б приведены хроматограммы зольфракций, выделенных из полимеров ДМГД с добавками ФПК. Для сравнения дана хроматографическая кривая ПММА*, на основе которого был получен ФПК. Видно, что наиболее существенные различия имеют хроматограммы зольфракции, выделенной из ПДМГД с добавкой ФПК 10%, и ПММА* (рис. 56, кривые 1 и 4). Очевидно, значительная часть введенной добавки входит в состав образующегося полимера ДМГД; при этом низкомолекулярная составляющая ФПК остается инертной. Хроматограммы полимерных продуктов из золь-фракций, выделенных из полимеров ДМГД с добавками ФПК 20–30%, имеют полимодальный характер, как и исходный ПММА* (рис. 56, кривые 2–4).

Из данных табл. 5 следует, что молекулярномассовые характеристики ПММА*, входящего в состав ФПК, и золь-фракций существенно различаются. Полимеры в золь-фракции, выделенной из ПДМГД с добавкой ФПК 10%, представляют собой низкомолекулярные продукты. Полимеры в золь-фракциях, выделенных из ПДМГД с добавкой ФПК 20–30%, – более высокомолекулярные по сравнению с исходным ПММА*. Возрастание M_n в ~2.5 раза свидетельствует об увеличении длины цепей полимерного продукта. Между тем их M_w сохраняется близким к M_w ПММА*. В результате полимерные продукты из зольфракций характеризуются существенно более узким ММР.

При растворении продуктов золь-фракций полимеров ДМГД с добавками ФПК в полярном растворителе – ТГФ наблюдали выделение фуллерена. Очевидно, некоторая (малая) часть фуллерена остается после полимеризации в свободной форме и вымывается растворителем из полимерной сетки в ходе золь-гель-анализа.

О структурно-физических особенностях полимеров ДМГД с добавками ФПММА* и ФПК судили также по результатам измерения их механических, термомеханических и диффузионносорбционных свойств.

На рис. 6 приведены модуль упругости E_1 и модуль в области вынужденной эластичности Е2 полимеров ДМГД в зависимости от содержания в полимере ФПММА* и ФПК; модули вычислены из наклонов линейных участков кривых напряжения σ – деформация ε, измеренных при 20°С. Для сравнения даны модули E_1 и E_2 полимеров ДМГД в зависимости от содержания в полимере ПММА*, полученные в работе [23]. Деформационные кривые полимеров ДМГД с добавками ФПММА* и ФПК имеют такой же вид, как в случае ПДМГД с добавками ПММА* [14]. На них выделяют два линейных участка с наклонами E_1 и E_2 , соответствующих модулю упругости и модулю в области вынужденной эластичности. Видно, что исходный полимер ДМГД имеет более низкий модуль упругости E_1 , чем полимеры ДМГД с добавками ПММА* и ФПММА*. Это очевидно является следствием наименьшей конверсии связей С=С. При добавлении ПММА* и ФПММА* и увеличении их содержания в полимере ДМГД модуль упругости E_1 возрастает, вероятно, из-за повышения конверсии связей С=С и уровня межмолекулярных взаимодействий сложноэфирных групп соседних полимерных цепей. В интервале концентраций ФПММА* от 0 до 20 мас. % модуль упругости E_1 полимера имеет практически те же значения, как и при добавлении идентичного количества ПММА* (рис. 6а, кривые 1 и 3). Это означает, что концентрация узлов физической сетки и их время жизни в данных полимерах близки, и фуллерен, включенный в полимерные цепи, практически не влияет на уровень межмолекулярных взаимодействий.

Увеличение модуля E_1 с ростом концентрации ПММА* и ФПММА* от 0 до 30 мас. % представляется вполне обычным, если рассматривать их как разбавители сеткообразующего мономера ДМГД. Примером такого разбавителя в сетчатых сополимерах на основе ДМТЭГ может служить ММА. Разбавление звеньев ДМТЭГ в сополимере звеньями ММА и увеличение их содержания при-

Таблица 4. Молекулярно-массовые характеристики золь-фракций, выделенных из полимеров ДМГД с добавками ФПММА*, по данным ГПХ

Содержание добавки, мас. %	$M_n \times 10^{-3}$	$M_w \times 10^{-3}$	M_w/M_n
30	2.3	5.0	2.2
40	2.3	5.5	2.4

Таблица 5. Молекулярно-массовые характеристики золь-фракций, выделенных из полимеров ДМГД с добавками ФПК, по данным ГПХ

Содержание добавки, мас. %	$M_n \times 10^{-3}$	$M_w \times 10^{-3}$	M_w/M_n
10	1.8	2.9	1.6
20	10.1	13.1	1.3
30	10.4	15.2	1.5

водит к росту модуля упругости E_1 сополимера [8]. Максимальное значение модуля E_1 имеет гомополимер ПММА, а минимальное – гомополимер ДМТЭГ. Таким образом, в данном интервале концентраций ПММА* и ФПММА* выступают, по-видимому, в роли разбавителя сеткообразующего мономера ДМГД. Химически активные макромолекулы ПММА* и ФПММА*, встраиваясь в полимерные цепи ДМГД, оказывают тот же эффект, что и ММА, обеспечивая рост модуля упругости E_1 .

Полимеры ДМГД с добавками ФПММА* 30 и 40 мас. % имеют более низкие модули упругости E_1 по сравнению с полимерами ДМГД с аналогичными добавками исходного ПММА*, несмотря на близкие конверсии связей С=С. В этом интервале концентрации фуллерен, включенный в полимерные цепи, по-видимому, создает стерические препятствия для межмолекулярных взаимодействий сложноэфирных групп полимерных цепей и снижает концентрацию и время жизни узлов физической сетки, ответственной за сопротивление деформированию.

Кривая $E_1 = f[\Phi\Pi K]$ лежит существенно ниже кривых $E_1 = f[\Phi\Pi MA^*]$ и $E_1 = f[\Pi MMA^*]$ и носит иной характер (рис. 6а). Более низкие значения E_1 для полимеров ДМГД с добавками ФПК, вероятно, обусловлены меньшими значениями конверсии связей C=C в этих полимерах вследствие ингибирования полимеризации ДМГД фуллереном. В результате концентрация узлов

Рис. 6. Зависимости модуля упругости E_1 (а) и модуля в области вынужденной эластичности E_2 (б) от содержания в ПДМГД добавок ФПММА* (1), ФПК (2) и ПММА* (3).

физической сетки в них меньше, чем в полимерах ДМГД с добавками ПММА* и ФПММА*. Обращает на себя внимание слабая зависимость E_1 от концентрации ФПК в полимерах ДМГД. Молекулы фуллерена, присутствующие в ФПК в виде кластеров (C_{60})_x, препятствуют межмолекулярным взаимодействиям сложноэфирных групп полимерных цепей.

На рис. 6б (кривые 1 и 2) показано, что с ростом содержания ФПММА* и ФПК в полимерах ДМГД модуль в области вынужденной эластичности E_2 снижается. Аналогичная зависимость характерна и для полимеров ДМГД с добавками ПММА* (рис. 6б, кривая 3). Если рассматривать ПММА*, ФПММА* и ФПК как разбавители сеткообразующего мономера ДМГД, то зависимости модуля E_2 от их концентрации также являются характерными для сетчатых полимеров. Так, в сетчатых сополимерах ДМТЭГ-ММА с увеличением содержания разбавителя – звеньев монофункционального мономера модуль E_2 снижается [8]. Максимальное значение E_2 имеет гомополимер ДМТЭГ. Зависимость E_2 от содержания в полимере ДМГД добавок ПММА*, ФПММА* и ФПК носит общий характер. Причина во всех случаях одна – уменьшение эффективной концентрации узлов химической сетки и количества оставшихся физических узлов после развития деформации по механизму вынужденной эластичности.

На рис. 66 кривая 1 лежит выше кривых 2 и 3. Более высокие значения E_2 для полимеров ДМГД с добавками ФПММА* по сравнению с полимерами ДМГД с идентичными добавками ФПК (кривая 2) вполне объяснимы и связаны, прежде всего, с более высокой конверсией связей С=С в них. Однако значения E_2 для полимеров ДМГД с добавками ФПММА* оказываются больше, чем для полимеров ДМГД с аналогичными добавками ПММА* (кривая 3), несмотря на близкие конверсии связей С=С в них. Высокие значения E_2 для полимеров ДМГД с добавками ФПММА*, по-видимому, обусловлены большей концентрацией узлов физической сетки в этих полимерах после их деформирования.

Полимеры ДМГД с добавками ФПК характеризуются более низкой конверсией, чем полимеры ДМГД с идентичными добавками ПММА^{*}. Однако при концентрациях ФПК, равных 20 и 30 мас. %, они имеют значения модуля E_2 выше, вероятно, в результате участия фуллерена в формировании дополнительных узлов химической сетки и его влияния на время жизни и концентрацию узлов физической сетки, оставшихся после деформирования.

Важной структурно-физической характеристикой сетчатых полимеров, получаемой из деформационных кривых, является величина σ_1 , соответствующая началу перехода в область вынужденной эластичности. Для полидиметакрилатов эта величина совпадает в пределах погрешности эксперимента с разрывной прочностью σ_{p} , измеряемой в режиме одноосного растяжения [8]. На рис. 7 приведены зависимости величины σ_1 от содержания в полимере ДМГД добавок ПММА*, ФПММА* и ФПК. С ростом содержания ПММА* до 20 мас. % σ_1 изменяется незначительно (рис. 7, кривая 1). Однако дальнейшее увеличение концентрации ПММА* приводит к ее резкому возрастанию. Так, при содержании ПММА* 40% в полимере ДМГД σ_1 возрастает в ~1.7 раза по сравнению с ее значением в исходном полимере. За-

Рис. 7. Зависимости величины σ_1 от содержания в полимерах ДМГД ПММА* (1), ФПММА* (2) и ФПК (3).

висимость σ_1 от концентрации ФПММА* в полимерах ДМГД носит другой характер: величина σ_1 слабо зависит от концентрации ФПММА* в интервале 0–10 мас. %. Затем она скачкообразно меняется в интервале 10–20 мас. % и достигает предельных значений при 30 и 40 мас. % ФПММА* (рис. 7, кривая 2). Монотонное незначительное увеличение σ_1 в полимерах ДМГД с добавками ФПК наблюдается в интервале концентраций ФПК от 0 до 20 мас. % (рис. 7, кривая 3), затем величина σ_1 падает. Таким образом, влияние добавок ФПММА* и ФПК на величину σ_1 становится заметным только при их концентрации выше 20 мас. %.

В формирование механических свойств полимеров ДМГД с добавками ПММА* и его фуллеренсодержащих аналогов, по-видимому, значительный вклад вносят инертные макромолекулы полимерных добавок. Распределенные в объеме полимерного тела, они обеспечивают высокий уровень межмолекулярных взаимодействий сложноэфирных групп полимерных цепей и повышают жесткость материала, как следует из сравнения модулей упругости исходного и модифицированного сетчатого полимера.

Полимеры ДМГД с добавками ФПММА* и ФПК обладают иными релаксационными свойствами, чем исходный полимер. Об этом свидетельствуют вычисленные из термомеханических кривых значения их температуры стеклования и ширины перехода из стеклообразного в высокоэластическое состояние. Типичные термомеханические кривые ПДМГД с различным содержанием ФПММА* приведены на рис. 8. В табл. 6 даны значения $T_{\rm c}$ и $\Delta T_{\rm c}$ для исследованных полимеров. Из приведенных данных следует, что эти параметры зависят от содержания в полимере добавок $\Phi \Pi M M A^*$ и $\Phi \Pi K$. При температуре, близкой к T_c сополимеров разветвленных ΦΠΜΜΑ* И ПММА*, т.е. полимерной составляющей ФПК, размораживается сегментальная подвижность макромолекул, не участвующих в полимериза-

Рис. 8. Типичные термомеханические кривые ПДМГД с 10 (1), 20 (2), 30 (3) и 40 мас. % (4) ФПММА*. Нагрузка 300 г.

Добавка	Содержание добавки, мас. %	$T_{\rm c}$, °C	$\Delta T_{\rm c}, {}^{\circ}{\rm C}$
ПММА*	10	57.5	29.9
	20	60.8	44.5
	30	64.7	43.4
	40	70.0	46.0
ФПММА*	10	56.2	38.4
	20	66.2	51.7
	30	68.3	49.3
	40	73.7	47.4
ФПК	10	51.6	28.5
	20	44.0	29.6
	30	55.6	47.4

Таблица 6. Значения T_c и ΔT_c для ПДМГД с добавками ПММА*, ФПММА* и ФПК

ции, и наблюдается локальный α-переход, ширина которого $\Delta T_{\rm c}$ увеличивается с ростом содержания добавок в полимере (табл. 6). В стеклообразной матрице полимера ДМГД инертные макромолекулы ФПММА*, как и молекулы исходного ПММА*, образуют очаги с повышенной молекулярной подвижностью. Из сравнения величины $T_{\rm c}$ для ПДМГД с идентичными добавками ПММА* и ФПММА* следует, что ковалентно связанный с полимерными цепями С₆₀ незначительно влияет на локальную температуру стеклования T_c. Она близка к значениям T_c, характерным для ПДМГД с добавками ПММА* того же состава. Расхождения в Т_с при содержании добавок 20-40% составляют 3-5°С в сторону ее увеличения. Это указывает на незначительное повышение жесткости и снижение подвижности полимерной сетки при включении фуллерена в полимерные добавки.

В ПДМГД с добавками ФПК локальная T_c ниже на 6–17°С по сравнению с таковой в ПДМГД с добавками ПММА*. Это свидетельствует о более высокой сегментальной молекулярной подвижности цепей ПДМГД, полученного в присутствии ФПК. Повышенная подвижность, по-видимому, связана не только с меньшей конверсией связей С=С и наличием инертных макромолекул ПММА* с большим количеством концевых цепей, но и с присутствием фуллерена, который понижает уровень межмолекулярных взаимодействий полиметакрилатных цепей. Макромолекулы вводимых добавок, как предполагалось ранее [23], образуют в полимерной сетке микрофазу. Ее наличие придает сеткам новый комплекс физико-химических свойств, связанных, прежде всего, с молекулярной подвижностью. Следует отметить, что в исследованном интервале температуры при нагрузках не более 300 г не происходит "размораживание" молекулярной подвижности самой полимерной сетки, состоящей из звеньев ДМГД.

О надмолекулярной структуре полимерной сетки и ее подвижности судили на основании результатов диффузионно-сорбционного зондирования ПДМГД с добавками ФПММА* и ФПК парами бензола. На рис. 9а видно, что скорость диффузии бензола в полимерную сетку уменьшается с увеличением содержания $\Phi\Pi MMA^*$ от 0 до 30 мас. %. Это может быть вызвано ростом плотности химической сшивки и плотности молекулярной упаковки вследствие заполнения свободного объема инертными молекулами ФПММА*. Для их набухания и растворения требуется значительное время, поскольку концевые цепи разветвленных макромолекул образуют области с более высокой плотностью, чем внутри макромолекул. Предельная сорбция достигает максимальных значений ~17% в ПДМГД с добавкой ФПММА*, равной 20 мас. %. При содержании в полимере 30 мас. % ФПММА* сорбция не достигает предельных значений, вероятно, в результате растворения и вымывания инертных макромолекул и их растворимых продуктов полимеризации. Процесс усиливается в полимере ДМГД, содержащем 40 мас. % ФПММА* (рис. 9а, кривая 6). Этот результат подтверждает наличие в ПДМГД полимерного наполнителя - инертных макромолекул ФПММА* и согласуется с данными зольгель-анализа.

На рис. 96 приведены кинетические кривые сорбции бензола полимерами ДМГД, полученными в присутствии ФПК. Видно, что сорбция паров бензола полимерами ДМГД, содержащими 10 и 30% ФПК, протекает с близкой скоростью, тогда как предельные значения сорбции значительно различаются и составляют соответственно ~15 и ~5%. Полимер ДМГД, содержащий 20% ФПК, демонстрирует более высокие скорости диффузии паров бензола. Однако, не достигнув предельных значений, величина *S* начинает падать в результате растворения инертной составляющей макромолекул ФПК.

Сравнивая кривые на рис. 9а и 96, видим, что полимеры ДМГД, полученные в присутствии идентичных добавок ФПММА* и ФПК, имеют различные диффузионно-сорбционные свойства и характеризуются различной молекулярной подвижностью. Так, сорбция *S* паров бензола поли-

Рис. 9. Кинетика сорбции бензола полимерами ДМГД: а – с добавками 0 (1), 5 (2), 10 (3), 20 (4), 30 (5) и 40 мас. % (6) ФПММА*; б – с добавками 10 (1), 20 (2) и 30 мас. % (3) ФПК. *T* = 20°С.

мерами ДМГД, содержащими 10% ФПК и ФПММА*, при t = 100 ч равна ~11 и 6% соответственно. Сорбция *S* паров бензола полимерами ДМГД, полученными в присутствии 20% ФПК и ФПММА*, при t = 100 ч составляет ~14 и ~6% соответственно. Следовательно, полимерные цепи ПДМГД с добавками ФПК имеют более высокую молекулярную подвижность вследствие наличия в них свободного объема, обусловленного, прежде всего, низкой плотностью химической сшивки.

Разные диффузионно-сорбционные свойства показывают также ПДМГД, содержащие 30% ФПММА* и ФПК (рис. 9а, кривая 5 и рис. 9б, кривая 3). При t = 100 ч значение S полимеров ДМГД с добавкой ФПК достигает предельного уровня, равного ~5%. Тогда как ПДМГД с ФПММА* продолжает поглощать пары бензола с достаточно высокой скоростью; при достижении 400 ч значение S начинает падать.

Снижение сорбции, наблюдаемое в полимерах ДМГД с добавками 30 и 40% ФПММА*, сопро-

вождается их механическим разрушением. Между тем уменьшение сорбции, характерное для полимера ДМГД с добавкой 20% ФПК, не приводит к понижению прочности; полимер сохраняет свою целостность, несмотря на появление микротрещин. Не разрушается и полимер ДМГД с 30%-ной добавкой ФПК в отличие от полимера ДМГД с идентичной добавкой ФПММА*.

Таким образом, в работе получены ПММА разветвленного строения с разным типом связывания фуллерена. Контролируемая передатчиком цепи радикальная сополимеризация ММА с диметакрилатом в растворе, содержащем фуллерен, позволяет получать разветвленные полиметакрилаты с ковалентно связанным фуллереном в одну стадию. Разветвленная архитектура макромолекул возникает, главным образом, в результате участия в реакции сополимеризации "подвешенных" связей C=C диметакрилата, а присоединение фуллерена – вследствие взаимодействия полимерных радикалов и кратных связей С₆₀, обрыва радикалов полимера на радикалах алкилзамещенных производных С_{60,} а также обрыва путем взаимодействия полимер-фуллереновых радикалов. В результате обрыва полимерных цепей на нескольких центрах фуллерена усложняется архитектура сополимера за счет появления макромолекул звездообразного строения. Условия синтеза – соотношение реагентов, разбавление, концентрация инициатора и фуллерена определяют топологию, степень разветвления и физико-химические свойства образующихся сополимеров. При этом решающее значение имеет соотношение разветвитель : передатчик цепи. Между тем увеличение концентрации фуллерена в реакционной смеси и, соответственно, возрастание вклада многочисленных реакций фуллерена с полимерными радикалами может существенно отразиться на архитектуре и свойствах получаемых сополимеров. Формирование разветвленных полиметакрилатов с нековалентно связанным фуллереном протекает в две стадии: первая включает синтез исходного разветвленного ПММА* с заданной топологической структурой и свойствами, а вторая - получение фуллеренполимерного композита. Это позволяет сохранять топологическую структуру исходного ПММА* и вводить большие количества фуллерена без изменения его электронной структуры и физических свойств. Предложен способ функционализации фуллереном сетчатых полидиметакрилатов путем трехмерной радикальной полимеризации диметакрилатов в присутствии фуллеренсодержащих разветвленных полиметакрилатов. Структурно-физические свойства образующихся полимерных сеток зависят от строения фуллеренсодержащих разветвленных полиметакрилатов и их концентрации в реакционной смеси.

Авторы выражают благодарность Е.О. Перепелициной за проведение хроматографических анализов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бадамшина Э.Р., Гафурова М.П. // Высокомолек. соед. Б. 2008. Т. 50. № 8. С. 1572.
- Юмагулова Р.Х., Биглова Ю.Н., Кузнецов С.И., Ионова И.А., Колесов С.В., Монаков Ю.Б. // Высокомолек. соед. А. 2008. Т. 50. № 3. С. 418.
- 3. Резников В.А., Меленевская Е.Ю., Литвинова Л.С., Згонник В.Н. // Высокомолек. соед. А. 2000. Т. 42. № 2. С. 229.
- Виноградова Л.В., Меленевская Е.Ю., Хачатуров А.С., Кевер Е.Е., Литвинова Л.С., Новокрещенова А.В., Сушко М.А., Кленин С.И., Згонник В.Н. // Высокомолек. соед. А. 1998. Т. 40. № 11. С. 1854.
- 5. Лавренко П.Н., Евлампиева Н.П., Волохова Д.М., Виноградова Л.В., Меленевская Е.Ю., Згонник В.Н. // Высокомолек. соед. А. 2002. Т. 44. № 2. С. 289.
- Гинзбург Е.М., Поздняков А.О., Згонник В.Н., Поздняков О.Ф., Редков Б.П., Меленевская Е.Ю., Виноградова Л.В. // Письма в ЖТФ. 1996. Т. 22. № 4. С. 73.
- 7. Евлампиева Н.П., Дмитриева Т.С., Меленевская Е.Ю., Зайцева И.И., Рюмцев Е.И. // Высокомолек. соед. А. 2007. Т. 49. № 3. С. 447.
- 8. *Королев Г.В., Могилевич М.М.* Трехмерная радикальная полимеризация. Сетчатые и гиперразветвленные полимеры. СПб.: Химиздат, 2006.
- 9. O'Brien N., McKee A., Sherrington D.C., Slark A.T., Titterton A. // Polymer. 2000. V. 41. № 15. P. 6027.
- 10. *Курмаз С.В., Пыряев А.Н.* // Журн. прикл. химии. 2009. Т. 82. № 7. С. 1179.
- 11. *Nierengarten J.F.* // Fullerenes Nanotubes Carbon Nanostructures. 2009. V. 13. P. 229.
- 12. Волкова Н.Н., Сумманен Е.Н., Смирнов Л.П. // Высокомолек. соед. А. 2003. № 10. С. 1659.
- 13. *Разумовский С.Д., Заиков Г.Е.* Озон и его реакции с органическими соединениями. М.: Наука, 1974.
- Курмаз С.В., Кочнева И.С., Перепелицина Е.О., Бубнова М.Л., Ожиганов В.В. // Высокомолек. соед. А. 2008. Т. 50. № 10. С. 1758.
- 15. *Курмаз С.В., Ожиганов В.В.* // Высокомолек. соед. Б. 2009. Т. 51. № 5. С. 864.
- 16. Ford W.T., Nishioka T., McCleskey S. // Macromolecules. 2000. V. 33. № 7. P. 2413.

- Ford W.T., Nishioka T., Qiu F., D'Souza F., Choi J., Kutner W., Noworyta K. // J. Org. Chem. 1999. V. 64. № 17. P. 6257.
- 18. Ford W.T., Nishioka T., Qiu F., D'Souza F., Choi J. // J. Org. Chem. 2000. V. 65. № 18. P. 5780.
- 19. Браун Д., Флойд А., Сейнзбери М. Спектроскопия органических веществ. М.: Мир, 1992.
- 20. Згонник В.Н., Виноградова Л.В., Меленевская Е.Ю., Литвинова Л.С., Хачатуров А.С. // Журн. прикл. химии. 1995. Т. 68. № 1. С. 99.
- 21. Соколов В.И., Станкевич И.В. // Успехи химии. 1993. Т. 62. № 5. Р. 455.
- Korobov M.V., Mirakyan A.L., Avramenko N.V., Oloffson G., Smith A.L., Ruoff R.S. // J. Phys. Chem. B. 1999. V. 103. P. 1339.
- 23. *Курмаз С.В., Ожиганов В.В.* // Высокомолек. соед. Б. 2010. Т. 52. № 7. С. 1167.
- 24. *Tarasova E., Aseyev V., Fillipov A., Heikki T.* // Polymer. 2007. V. 48. № 15. P. 4503.